169
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Toward ecological intensification through the co-production of the floating macrophyte Azolla filiculoides and the giant gourami Osphronemus goramy Lacepède (1801) in Indonesian ponds

, , , &

References

  • Abdel-Tawwab, M. 2006. Effect of free-floating macrophyte, Azolla pinnata on water physico- chemistry, primary productivity, and the production of Nile tilapia, Oreochromis niloticus (L.), and Common Carp, Cyprinus carpio L., in fertilized earthen ponds. Journal of Applied Aquaculture 18 (1):21–41. doi:10.1300/J028v18n01_02.
  • Abou, Y., E. D. Fiogbé, and J. C. Micha. 2007a. A preliminary assessment of growth and production of Nile tilapia, Oreochromis niloticus L., fed Azolla-based-diets in earthen ponds. Journal of Applied Aquaculture 19 (4):55–69. doi:10.1300/J028v19n04_03.
  • Abou, Y., E. D. Fiogbé, and J.-C. Micha. 2007. Effects of stocking density on growth, yield and profitability of farming Nile tilapia, Oreochromis niloticus L., fed Azolla diet, in earthen ponds. Aquaculture Research 38 (6):595–604. doi:10.1111/j.1365-2109.2007.01700.x.
  • Ahmed, G. U., M. M. Rahman, M. N. Alam, and B. Sarker. 2015. Comparative study on growth performance of Thai sharpunti (Puntius gonionotus) using two different weeds duckweed (Lemna minor) and Azolla fern (Azolla pinnata). Research in Agriculture Livestock and Fisheries 2 (2):369–74. doi:10.3329/ralf.v2i2.25023.
  • Amornsakun, T., S. Kullai, and A. Hassan. 2014. Feeding behaviour of giant gourami, Osphronemus goramy (Lacepède) larvae. Songklanakarin Journal of Science and Technology 36 (3):261–64.
  • Anh, N. T. N., T. T. T. Hien, and T. N. Hai. 2013. Potential uses of gut weed Enteromorpha spp. as a feed for herbivorous fish. Communications in Agricultural and Applied Biological Sciences 78 (4):312–15.
  • AOAC. 1999. Official methods of analysis of AOAC international. Maryland: Association of Official Analytical Chemists.
  • Arifin, O. Z., M. H. F. At‐thar, and N. Nafiqoh. 2013. Pengaruh induk dan heterosis karakter pertumbuhan hasil persilangan intraspesifik gurame bastar dan bleuesafir (Osphronemus goramy). Prosiding Forum Inovasi Teknologi Akuakultur 1: 703–709 (in Indonesian).
  • Aryani, N., A. Mardiah, and H. Syandri. 2017. Influence of feeding rate on the growth, feed efficiency and carcass composition of the Giant gourami (Osphronemus goramy). Pakistan Journal of Zoology 49 (5). doi:10.17582/journal.pjz/2017.49.5.1775.1781.
  • Aubin, J., M. Callier, H. Rey‐Valette, S. Mathe, A. Wilfart, M. Legendre, … P. Fontaine. 2019. Implementing ecological intensification in fish farming: Definition and principles from contrasting experiences. Reviews in Aquaculture 11 (1):149–67. doi:10.1111/raq.12231.
  • Brouwer, P., A. Bräutigam, V. A. Buijs, A. O. Tazelaar, A. van der Werf, U. Schlüter, and H. Schluepmann. 2017. Metabolic adaptation, a specialized leaf organ structure and vascular responses to diurnal N2 fixation by Nostoc azollae sustain the astonishing productivity of Azolla ferns without nitrogen fertilizer. Frontiers in Plant Science 8:442. doi:10.3389/fpls.2017.00442.
  • Domingues, F. D., F. L. Starling, C. C. Nova, B. R. Loureiro, L. C. E Souza, and C. W. Branco. 2017. The control of floating macrophytes by grass carp in net cages: Experiments in two tropical hydroelectric reservoirs. Aquaculture Research 48 (7):3356–68. doi:10.1111/are.13163.
  • El-Sayed, A.-F. 1992. Effects of substituting fish meal with Azolla pinnata in practical diets for fingerling and adult Nile tilapia, Oreochromis niloticus (L.). Aquaculture Research 23 (2):167–73. doi:10.1111/j.1365-2109.1992.tb00607.x.
  • FAO. 2018. The state of world fisheries and aquaculture 2018 - Meeting the sustainable development goals. Rome. Licence: CC BY-NC-SA 3.0 IGO.
  • FAO. 2019. Cultured aquatic species information programme. Osphronemus goramy. Cultured aquatic species information programme. In FAO fisheries and aquaculture department [online], ed. D. Caruso, Z. O. Arifin, J. Subagja, J. Slembrouck, and M. New. Rome. Updated 26 September 2019. [Cited 4 June 2021]. http://www.fao.org/fishery/culturedspecies/Osphronemus_goramy/en
  • FAO. 2020. FishStatJ: Software for fishery statistical time series. Italy: Roma.
  • Farahpour-Haghani, A., M. Hassanpour, F. Alinia, G. Nouri-Ganbalani, J. Razmjou, and D. Agassiz. 2017. Water ferns Azolla spp. (Azollaceae) as new host plants for the small China- mark moth, Cataclysta lemnata (Linnaeus, 1758) (Lepidoptera, Crambidae, Acentropinae). Nota Lepidopterologica 40:1. doi:10.3897/nl.40.10062.
  • Ferdoushi, Z., F. Haque, S. Khan, and M. Haque. 2008. The effects of two aquatic floating macrophytes (Lemna and Azolla) as biofilters of nitrogen and phosphate in fish ponds. Turkish Journal of Fisheries and Aquatic Sciences 8 (2):253–58.
  • Fewtrell, L., and J. Bartram, Eds. 2001. Water quality: Guidelines, standards & health. London: IWA Publishing.
  • Froese, R. 2006. Cube law, condition factor and weight–length relationships: history, meta‐analysis and recommendations. Journal of Applied Ichthyology 22 (4):241–25.
  • Hasan, M. R. 2010. On-farm feeding and feed management in aquaculture. FAO Aquaculture Newsletter (45):48.
  • Hasan, M. R., and R. Chakrabarti. 2009. Use of algae and aquatic macrophytes as feed-in small-scale aquaculture: A review. FAO Fisheries and Aquaculture Technical Paper. No. 531, Rome, FAO, 123p.
  • Hassan, M. S., and P. Edwards. 1992. Evaluation of duckweed (Lemna perpusilla and Spirodela polyrrhiza) as feed for Nile tilapia (Oreochromis niloticus). Aquaculture 104 (3–4):315–26. doi:10.1016/0044-8486(92)90213-5.
  • Henry-Silva, G. G., and A. F. M. Camargo. 2006. Efficiency of aquatic macrophytes to treat Nile tilapia pond effluents. Scientia Agricola 63 (5):433–38. doi:10.1590/S0103-90162006000500003.
  • Hughes, A. D., and K. D. Black. 2016. Going beyond the search for solutions: Understanding trade-offs in European integrated multi-trophic aquaculture development. Aquaculture Environment Interactions 8:191–99. doi:10.3354/aei00174.
  • Kibria, A. S. M., and M. M. Haque. 2018. Potentials of integrated multi-trophic aquaculture (IMTA) in freshwater ponds in Bangladesh. Aquaculture Reports 11:8–16. doi:10.1016/j.aqrep.2018.05.004.
  • Kim, E., S. Yoo, H. Y. Ro, H. J. Han, Y. W. Baek, I. C. Eom, and K. Choi. 2013. Aquatic toxicity assessment of phosphate compounds. Environmental Health and Toxicology 28:28. doi:10.5620/eht.2013.28.e2013002.
  • Kristanto, A. H., J. Slembrouck, J. Subagja, S. Pouil, O. Z. Arifin, V. A. Prakoso, and M. Legendre. 2020. Survey on egg and fry production of giant gourami (Osphronemus goramy): Current rearing practices and recommendations for future research. Journal of the World Aquaculture Society 51 (1):119–38. doi:10.1111/jwas.12647.
  • Madsen, T. V., and N. Cedergreen. 2002. Sources of nutrients to rooted submerged macrophytes growing in a nutrient-rich stream. Freshwater Biology 47 (2):283–91. doi:10.1046/j.1365-2427.2002.00802.x.
  • Mandal, R. N., A. K. Datta, N. Sarangi, and P. K. Mukhopadhyay. 2010. Diversity of aquatic macrophytes as food and feed components to herbivorous fish- a review. Indian Journal of Fisheries 57 (3):65–73.
  • Maskur, M., R. Rina, and M. A. Hamid. 2013. Small‐scale freshwater aquaculture extension development in Indonesia. https://enaca.org/?id=189&title=small-scale-aquaculture-extension-in-indonesia.
  • Mungkung, R., J. Aubin, T. H. Prihadi, J. Slembrouck, H. M. van der Werf, and M. Legendre. 2013. Life cycle assessment for environmentally sustainable aquaculture management: A case study of combined aquaculture systems for carp and tilapia. Journal of Cleaner Production 57:249–56. doi:10.1016/j.jclepro.2013.05.029.
  • Nhan, D. K., M. C. Verdegem, A. Milstein, and J. A. Verreth. 2008. Water and nutrient budgets of ponds in integrated agriculture–aquaculture systems in the Mekong Delta, Vietnam. Aquaculture Research 39 (11):1216–28. doi:10.1111/j.1365-2109.2008.01986.x.
  • Pouil, S., R. Samsudin, J. Slembrouck, A. Sihabuddin, G. Sundari, K. Khazaidan, A. H. Kristanto, B. Pantjara, and D. Caruso. 2019. Nutrient budgets in a small-scale freshwater fish pond aquaculture system in Indonesia. Aquaculture 504:267–74. doi:10.1016/j.aquaculture.2019.01.067.
  • Pouil, S., R. Samsudin, J. Slembrouck, A. Sihabuddin, G. Sundari, K. Khazaidan, A. H. Kristanto, B. Pantjara, and D. Caruso. 2020. Effects of shading, fertilization and snail grazing on the productivity of the water fern Azolla filiculoides for tropical freshwater aquaculture. Aquatic Botany 160:103150.
  • Pucher, J., Mayrhofer, R., El-Matbouli, M., and U. Focken. 2015. Pond management strategies for small-scale aquaculture in northern Vietnam: fish production and economic performance. Aquaculture International 23:297–314. https://doi.org/10.1007/s10499-014-9816-0
  • Pucher, J., R. Mayrhofer, M. El‐Matbouli, and U. Focken. 2016. Effects of modified pond management on limnological parameters in small‐scale aquaculture ponds in mountainous Northern Vietnam. Aquaculture Research 47 (1):56–70. doi:10.1111/are.12465.
  • Pucher, J., and U. Focken. 2017. Uptake of nitrogen from natural food into fish in differently managed polyculture ponds using 15N as tracer. Aquaculture International 25 (1):87–105. doi:10.1007/s10499-016-0015-z.
  • Rahman, M. M. 2015. Effects of co-cultured common carp on nutrients and food web dynamics in rohu aquaculture ponds. Aquaculture Environment Interaction 6 (3):223–32. doi:10.3354/aei00127.
  • Rosa, J., M. F. Lemos, D. Crespo, M. Nunes, A. Freitas, F. Ramos, M. A. Pardal, and S. Leston. 2020. Integrated multitrophic aquaculture systems – Potential risks for food safety. Trends in Food Science & Technology 96:79–90. doi:10.1016/j.tifs.2019.12.008.
  • Sipaúba-Tavares, L. H., E. G. P. Favero, and F. D. S. Braga. 2002. Utilization of macrophyte biofilter in effluent from aquaculture: I. Floating plant. Brazilian Journal of Biology 62 (4A):713–23. doi:10.1590/S1519-69842002000400019.
  • Slembrouck, J., O. Z. Arifin, S. Pouil, J. Subagja, A. Yani, A. H. Kristanto, and M. Legendre. 2019. Gender identification in farmed giant gourami (Osphronemus goramy): A methodology for better broodstock management. Aquaculture 498:388–95. doi:10.1016/j.aquaculture.2018.08.056.
  • Slembrouck, J., R. Samsudin, B. Pantjara, A. Sihabuddin, M. Legendre, and D. Caruso. 2018. Choosing floating macrophytes for ecological intensification of small-scale fish farming in tropical areas: A methodological approach. Aquatic Living Resources 31:1–9. doi:10.1051/alr/2018017.
  • Supriyadi, H., & Rukyani, A. (2000). The use of chemicals in aquaculture in Indonesia. In Use of Chemicals in Aquaculture in Asia: Proceedings of the Meeting on the Use of Chemicals in Aquaculture in Asia 20-22 May 1996, Tigbauan, Iloilo, Philippines (pp. 113-118). Aquaculture Department, Southeast Asian Fisheries Development Center.
  • Tacon, A. G., M. Metian, G. M. Turchini, and S. S. De Silva. 2009. Responsible aquaculture and trophic level implications to global fish supply. Reviews in Fisheries Science 18 (1):94–105. doi:10.1080/10641260903325680.
  • Temmink, R. J., S. F. Harpenslager, A. J. Smolders, G. van Dijk, R. C. Peters, L. P. Lamers, and M. M. van Kempen. 2018. Azolla along a phosphorus gradient: Biphasic growth response linked to diazotroph traits and phosphorus-induced iron chlorosis. Scientific Reports 8 (1):1–8. doi:10.1038/s41598-018-22760-5.
  • Troell, M., A. Joyce, T. Chopin, A. Neori, A. H. Buschmann, and J. G. Fang. 2009. Ecological engineering in aquaculture—potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture 297 (1–4):1–9. doi:10.1016/j.aquaculture.2009.09.010.
  • World Bank. 2013. Fish to 2030: Prospects for fisheries and aquaculture Agriculture and environmental services discussion paper: No. 3. Washington, DC: World Bank Group. http://documents.worldbank.org/curated/en/458631468152376668/Fish-to-2030-.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.