1,919
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comparison of EPA and DHA utilization in Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) fed two diets with different content of fish oil and rapeseed oil

, , , , &

References

  • Aas, T. S., B. Grisdale-Helland, B. F. Terjesen, and S. J. Helland. 2006. Improved growth and nutrient utilisation in Atlantic salmon (Salmo salar) fed diets containing a bacterial protein meal. Aquaculture 259 (1–4):365–76. doi:10.1016/j.aquaculture.2006.05.032.
  • Austreng, E. 1978. Digestibility determination in fish using chromic oxide marking and analysis of contents from different segments of the gastrointestinal tract. Aquaculture 13 (3):265–72. doi:10.1016/0044-8486(78)90008-X.
  • Bell, J. G., R. J. Henderson, D. R. Tocher, F. McGhee, J. R. Dick, A. Porter, R. P. Smullen, and J. R. Sargent. 2002. Substituting fish oil with crude palm oil in the diet of Atlantic salmon (Salmo salar) affects muscle fatty acid composition and hepatic fatty acid metabolism. The Journal of Nutrition 132 (2):222–30. doi:10.1093/jn/132.2.222.
  • Bell, J. G., J. McEvoy, D. R. Tocher, F. McGhee, P. J. Campbell, and J. R. Sargent. 2001. Replacement of fish oil with rapeseed oil in diets of Atlantic salmon (Salmo salar) affects tissue lipid compositions and hepatocyte fatty acid metabolism. The Journal of Nutrition 131 (5):1535–43. doi:10.1093/jn/131.5.1535.
  • Bell, J. G., F. McGhee, P. J. Campbell, and J. R. Sargent. 2003a. Rapeseed oil as an alternative to marine fish oil in diets of post-smolt Atlantic salmon (Salmo salar): Changes in flesh fatty acid composition and effectiveness of subsequent fish oil “wash out”. Aquaculture 218 (1–4):515–28. doi:10.1016/S0044-8486(02)00462-3.
  • Bell, J. G., D. R. Tocher, R. J. Henderson, J. R. Dick, and V. O. Crampton. 2003b. Altered fatty acid compositions in Atlantic salmon (Salmo salar) fed diets containing linseed and rapeseed oils can be partially restored by a subsequent fish oil finishing diet. The Journal of Nutrition 133 (9):2793–801. doi:10.1093/jn/133.9.2793.
  • Bendiksen, E. Å., C. A. Johnsen, H. J. Olsen, and M. Jobling. 2011. Sustainable aquafeeds: Progress towards reduced reliance upon marine ingredients in diets for farmed Atlantic salmon (Salmo salar L.). Aquaculture 314:132–39.
  • Berge, G., B. Hatlen, J. Odom, and B. Ruyter. 2013. Physical treatment of high EPA Y arrowia lipolytica biomass increases the availability of n‐3 highly unsaturated fatty acids when fed to A tlantic salmon. Aquaculture Nutrition 19:110–21. doi:10.1111/anu.12092.
  • Bou, M., G. M. Berge, G. Baeverfjord, T. Sigholt, T. K. Ostbye, O. H. Romarheim, B. Hatlen, R. Leeuwis, C. Venegas, and B. Ruyter. 2017a. Requirements of n-3 very long-chain PUFA in Atlantic salmon (Salmo salar L): Effects of different dietary levels of EPA and DHA on fish performance and tissue composition and integrity. British Journal of Nutrition 117 (1):30–47. doi:10.1017/S0007114516004396.
  • Bou, M., G. M. Berge, G. Baeverfjord, T. Sigholt, T.-K. Østbye, and B. Ruyter. 2017b. Low levels of very-long-chain n-3 PUFA in Atlantic salmon (Salmo salar) diet reduce fish robustness under challenging conditions in sea cages. Journal of Nutritional Science 6:e32. doi:10.1017/jns.2017.28.
  • Bou, M., T.-K. Østbye, G. M. Berge, and B. Ruyter. 2017c. EPA, DHA, and lipoic acid differentially modulate the n-3 fatty acid biosynthetic pathway in Atlantic salmon hepatocytes. Lipids 52 (3):265–83. doi:10.1007/s11745-017-4234-5.
  • Caballero, M., A. Obach, G. Rosenlund, D. Montero, M. Gisvold, and M. Izquierdo. 2002. Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss. Aquaculture 214 (1–4):253–71. doi:10.1016/S0044-8486(01)00852-3.
  • Crampton, V. O., D. A. Nanton, K. Ruohonen, P. O. Skjervold, and A. El‐Mowafi. 2010. Demonstration of salmon farming as a net producer of fish protein and oil. Aquaculture Nutrition 16 (4):437–46. doi:10.1111/j.1365-2095.2010.00780.x.
  • Figueiredo‐Silva, A., E. Rocha, J. Dias, P. Silva, P. Rema, E. Gomes, and L. Valente. 2005. Partial replacement of fish oil by soybean oil on lipid distribution and liver histology in European sea bass (Dicentrarchus labrax) and rainbow trout (Oncorhynchus mykiss) juveniles. Aquaculture Nutrition 11 (2):147–55. doi:10.1111/j.1365-2095.2004.00337.x.
  • Folch, J., M. Lees, and G. S. Stanley. 1957. A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry 226 (1):497–509. doi:10.1016/S0021-9258(18)64849-5.
  • Fonseca‐madrigal, J., V. Karalazos, P. Campbell, J. G. Bell, and D. R. Tocher. 2005. Influence of dietary palm oil on growth, tissue fatty acid compositions, and fatty acid metabolism in liver and intestine in rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition 11 (4):241–50. doi:10.1111/j.1365-2095.2005.00346.x.
  • Francis, D. S., G. M. Turchini, P. L. Jones, and S. S. De Silva. 2007. Dietary lipid source modulates in vivo fatty acid metabolism in the Freshwater Fish, Murray Cod (Maccullochella peelii peelii). Journal of Agricultural and Food Chemistry 55 (4):1582–91. doi:10.1021/jf062153x.
  • Frøyland, L., Ø. Lie, and R. Berge. 2000. Mitochondrial and peroxisomal β-oxidation capacities in various tissues from Atlantic salmon, Salmo salar. Aquaculture Nutrition 6 (2):85–89. doi:10.1046/j.1365-2095.2000.00130.x.
  • Glencross, B. D. 2009. Exploring the nutritional demand for essential fatty acids by aquaculture species. Reviews in Aquaculture 1:71–124.
  • Hatlen, B., G. M. Berge, J. M. Odom, H. Mundheim, and B. Ruyter. 2012. Growth performance, feed utilisation and fatty acid deposition in Atlantic salmon, Salmo salar L., fed graded levels of high-lipid/high-EPA Yarrowia lipolytica biomass. Aquaculture 364:39–47. doi:10.1016/j.aquaculture.2012.07.005.
  • Helland, S., B. Grisdale-Helland, and S. Nerland. 1996. A simple method for the measurement of daily feed intake of groups of fish in tanks. Aquaculture 139 (1–2):157–63. doi:10.1016/0044-8486(95)01145-5.
  • Kjær, M. A., B. Ruyter, G. M. Berge, Y. Sun, and T.-K.-K. Østbye. 2016. Regulation of the omega-3 fatty acid biosynthetic pathway in Atlantic salmon hepatocytes. PloS One 11 (12):e0168230. doi:10.1371/journal.pone.0168230.
  • Mason, M. E., and G. R. Waller. 1964. Dimethoxypropane induced transesterification of fats and oils in preparation of methyl esters for gas chromatographic analysis. Analytical Chemistry 36 (3):583–86. doi:10.1021/ac60209a008.
  • Mourente, G., and D. R. Tocher. 1998. The in vivo incorporation and metabolism of [1-14 C] linolenate (18: 3n-3) in liver, brain and eyes of juveniles of rainbow trout Oncorhynchus mykiss L and gilthead sea bream Sparus aurata L. Fish Physiology and Biochemistry 18 (2):149–65. doi:10.1023/A:1007717312480.
  • Randall, K., M. Reaney, and M. Drew. 2013. Effect of dietary coriander oil and vegetable oil sources on fillet fatty acid composition of rainbow trout. Canadian Journal of Animal Science 93 (3):345–52. doi:10.4141/cjas2013-001.
  • Refstie, S., S. J. Helland, and T. Storebakken. 1997. Adaptation to soybean meal in diets for rainbow trout, Oncorhynchus mykiss. Aquaculture 153 (3–4):263–72. doi:10.1016/S0044-8486(97)00025-2.
  • Regost, C., J. V. Jakobsen, and A. M. B. Rørå. 2004. Flesh quality of raw and smoked fillets of Atlantic salmon as influenced by dietary oil sources and frozen storage. Food Research International 37 (3):259–71. doi:10.1016/j.foodres.2003.12.003.
  • Richard, N., S. Kaushik, L. Larroquet, S. Panserat, and G. Corraze. 2006. Replacing dietary fish oil by vegetable oils has little effect on lipogenesis, lipid transport and tissue lipid uptake in rainbow trout (Oncorhynchus mykiss). British Journal of Nutrition 96 (2):299–309. doi:10.1079/BJN20061821.
  • Rosenlund, G., A. Obach, M. Sandberg, H. Standal, and K. Tveit. 2001. Effect of alternative lipid sources on long‐term growth performance and quality of Atlantic salmon (Salmo salar L.). Aquaculture Research 32:323–28. doi:10.1046/j.1355-557x.2001.00025.x.
  • Rosenlund, G., B. E. Torstensen, I. Stubhaug, N. Usman, and N. H. Sissener. 2016. Atlantic salmon require long-chain n-3 fatty acids for optimal growth throughout the seawater period. Journal of Nutritional Science 5:e19. doi:10.1017/jns.2016.10.
  • Røsjø, C., T. Berg, K. Manum, T. Gjøen, S. Magnusson, and M. S. Thomassen. 1994. Effects of temperature and dietary n-3 and n-6 fatty acids on endocytic processes in isolated rainbow trout (Oncorhynchus mykiss, Walbaum) hepatocytes. Fish Physiology and Biochemistry 13 (2):119–32. doi:10.1007/BF00004337.
  • Ruyter, B., C. Moya-Falcón, G. Rosenlund, and A. Vegusdal. 2006. Fat content and morphology of liver and intestine of Atlantic salmon (Salmo salar): Effects of temperature and dietary soybean oil. Aquaculture 252 (2–4):441–52. doi:10.1016/j.aquaculture.2005.07.014.
  • Ruyter, B., C. Roesjoe, K. Måsøval, O. Einen, and M. Thomassen. 2000a. Influence of dietary n-3 fatty acids on the desaturation and elongation of [1-14C] 18: 2 n-6 and [1-14C] 18: 3 n-3 in Atlantic salmon hepatocytes. Fish Physiology and Biochemistry 23 (2):151–58. doi:10.1023/A:1007893317923.
  • Ruyter, B., C. Røsjø, O. Einen, and M. Thomassen. 2000b. Essential fatty acids in Atlantic salmon: Effects of increasing dietary doses of n-6 and n-3 fatty acids on growth, survival and fatty acid composition of liver, blood and carcass. Aquaculture Nutrition 6 (2):119–27. doi:10.1046/j.1365-2095.2000.00137.x.
  • Ruyter, B., and M. Thomassen. 1999. Metabolism of n− 3 and n− 6 fatty acids in Atlantic salmon liver: Stimulation by essential fatty acid deficiency. Lipids 34 (11):1167–76. doi:10.1007/s11745-999-0468-3.
  • Sanden, M., I. Stubhaug, M. H. Berntssen, Ø. Lie, and B. E. Torstensen. 2011. Atlantic Salmon (Salmo salar L.) as a Net Producer of Long-Chain Marine ω-3 fatty acids. Journal of Agricultural and Food Chemistry 59 (23):12697–706. doi:10.1021/jf203289s.
  • Sigurgisladottir, S., S. P. Lall, C. C. Parrish, and R. G. Ackman. 1992. Cholestane as a digestibility marker in the absorption of polyunsaturated fatty acid ethyl esters in Atlantic salmon. Lipids 27 (6):418. doi:10.1007/BF02536382.
  • Sissener, N., B. Torstensen, M. Owen, N. Liland, I. Stubhaug, and G. Rosenlund. 2017. Temperature modulates liver lipid accumulation in Atlantic salmon (Salmo salar L.) fed low dietary levels of long-chain n-3 fatty acids. Aquaculture Nutrition 23 (4):865–78. doi:10.1111/anu.12453.
  • Stubhaug, I., Ø. Lie, and B. Torstensen. 2007. Fatty acid productive value and β‐oxidation capacity in Atlantic salmon (Salmo salar L.) fed on different lipid sources along the whole growth period. Aquaculture Nutrition 13 (2):145–55. doi:10.1111/j.1365-2095.2007.00462.x.
  • Stubhaug, I., D. R. Tocher, J. G. Bell, J. R. Dick, and B. E. Torstensen. 2005. Fatty acid metabolism in Atlantic salmon (Salmo salar L.) hepatocytes and influence of dietary vegetable oil. Biochimica Et Biophysica Acta (Bba)-molecular and Cell Biology of Lipids 1734:277–88.
  • Thanuthong, T., D. S. Francis, E. Manickam, S. D. Senadheera, D. Cameron-Smith, and G. M. Turchini. 2011. Fish oil replacement in rainbow trout diets and total dietary PUFA content: II) Effects on fatty acid metabolism and in vivo fatty acid bioconversion. Aquaculture 322:99–108. doi:10.1016/j.aquaculture.2011.09.026.
  • Tocher, D. R., J. G. Bell, P. MacGlaughlin, F. McGhee, and J. R. Dick. 2001. Hepatocyte fatty acid desaturation and polyunsaturated fatty acid composition of liver in salmonids: Effects of dietary vegetable oil. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 130 (2):257–70. doi:10.1016/S1096-4959(01)00429-8.
  • Torstensen, B. E., J. G. Bell, G. Rosenlund, R. J. Henderson, I. E. Graff, D. R. Tocher, Ø. Lie, and J. R. Sargent. 2005. Tailoring of Atlantic Salmon (Salmo salar L.) flesh lipid composition and sensory quality by replacing fish oil with a vegetable oil blend. Journal of Agricultural and Food Chemistry 53 (26):10166–78. doi:10.1021/jf051308i.
  • Torstensen, B. E., L. Frøyland, R. Ørnsrud, and Ø. Lie. 2004. Tailoring of a cardioprotective muscle fatty acid composition of Atlantic salmon (Salmo salar) fed vegetable oils. Food Chemistry 87 (4):567–80. doi:10.1016/j.foodchem.2004.01.009.
  • Torstensen, B. E., Ø. Lie, and L. Frøyland. 2000. Lipid metabolism and tissue composition in Atlantic salmon (Salmo salar L.)—effects of capelin oil, palm oil, and oleic acid‐enriched sunflower oil as dietary lipid sources. Lipids 35 (6):653–64. doi:10.1007/s11745-000-0570-6.
  • Turchini, G. M., and D. S. Francis. 2009. Fatty acid metabolism (desaturation, elongation and β-oxidation) in rainbow trout fed fish oil-or linseed oil-based diets. British Journal of Nutrition 102 (1):69–81. doi:10.1017/S0007114508137874.
  • Turchini, G. M., D. S. Francis, R. S. Keast, and A. J. Sinclair. 2011. Transforming salmonid aquaculture from a consumer to a producer of long chain omega-3 fatty acids. Food Chemistry 124 (2):609–14. doi:10.1016/j.foodchem.2010.06.083.
  • Waagbø, R., K. Sandnes, A. Sandvin, and Ø. Lie. 1991. Feeding three levels of n-3 polyunsaturated fatty acids at two levels of vitamin E to Atlantic salmon (Salmo salar), Growth and Chemical Composition. Fisk. Dir. Skr., Ser. Ernæring IV (l): 51–63.
  • Waagbø, R., K. Sandnes, O. J. Torrissen, A. Sandvin, and Ø. Lie. 1993. Chemical and sensory evaluation of fillets from Atlantic salmon (Salmo salar) fed three levels of n-3 polyunsaturated fatty acids at two levels of vitamin E. Food Chemistry 46 (4):361–66. doi:10.1016/0308-8146(93)90005-Z.
  • Yıldız, M., T. O. Eroldoğan, S. Ofori-Mensah, K. Engin, and M. A. Baltacı. 2018. The effects of fish oil replacement by vegetable oils on growth performance and fatty acid profile of rainbow trout: Re-feeding with fish oil finishing diet improved the fatty acid composition. Aquaculture 488:123–33. doi:10.1016/j.aquaculture.2017.12.030.
  • Ytrestøyl, T., T. S. Aas, and T. Åsgård. 2015. Utilisation of feed resources in production of Atlantic salmon (Salmo salar) in Norway. Aquaculture 448:365–74. doi:10.1016/j.aquaculture.2015.06.023.