293
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Freshwater mussel (Lamelliedens marginalis) to reduce the lead (Pb) bioaccumulation in aquaculture of stinging catfish, Heteropneustes fossilis

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Adeyemo, K. O., and O. Babalob. 2008. Geographical information system (GIS) mapping of spatio-temporal pollution status of rivers in Ibadan, Nigeria. Pakistan Journal of Biological Sciences 11 (7):982–88. doi:10.3923/pjbs.2008.982.988.
  • Afshan, S., S. Ali, U. Ameen, M. Farid, S. Bharwana, F. Hannan, and R. Ahmad. 2014. Effect of different heavy metal pollution on fish. Research Journal of Chemical and Environmental Sciences 2 (December):74–79.
  • Al-Ghanim, K. A., Z. Ahmad, H. A. Al-Balawi, F. Al-Misned, S. Mahboob, and E. A. Suliman. 2019. Accumulation and histological transformation in the gills, liver, muscles, and skin in Oreochromis niloticus induced by mercury. Turkish Journal of Veterinary and Animal Sciences 43 (2):276–84. doi:10.3906/vet-1710-50.
  • Alibabić, V., N. Vahčić, and M. Bajramović. 2007. Bioaccumulation of metals in fish of Salmonidae family and the impact on fish meat quality. Environmental Monitoring and Assessment 131 (13):349–64. doi:10.1007/s10661-006-9480-6.
  • Ash, A., T. Scholz, M. Oros, C. Levron, and P. K. Kar. 2011. Cestodes (Caryophyllidea) of the stinging catfish Heteropneustes fossilis (Siluriformes: Heteropneustidae) from Asia. The Journal of Parasitology 97 (5):899–907. doi:10.1645/ge-2661.1.
  • Begum, A., A. I. Mustafa, M. N. Amin, T. R. Chowdhury, S. B. Quraishi, and N. Banu. 2013. Levels of heavy metals in tissues of shingi fish (Heteropneustes fossilis) from Buriganga River, Bangladesh. Environmental Monitoring and Assessment 185 (7):5461–69. doi:10.1007/s10661-012-2959-4.
  • Bhatnagar, A., and G. Singh. 2010. Culture fisheries in village ponds: A multi-location study in Haryana, India. Agriculture and Biology Journal of North America 1 (5):961–68. doi:10.5251/abjna.2010.1.5.961.968.
  • Bhuyan, G., R. Anandhan, and V. Kavitha. 2014. Qualitative and quantitative analysis of fish tissue of Oreochromis Mossambicus collected from Kedilam River, Cuddalore, Tamilnadu, India. International Journal of Applied Sciences and Biotechnology 2 (2):135–41. (2SE-Research Articles). doi:10.3126/ijasbt.v2i2.10141.
  • Canli, M., and G. Atli. 2003. The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environmental Pollution 121 (1):129–36. doi:10.1016/S0269-7491(02)00194-X.
  • Chew, S. F., S. Z. L. Tan, S. C. Y. Ip, C. Z. Pang, K. C. Hiong, and Y. K. Ip. 2020. The non-ureogenic Stinging Catfish, Heteropneustes fossilis, actively excretes ammonia with the help of Na+/K+-ATPase when exposed to environmental ammonia. Frontiers in Physiology 10:1615. doi:10.3389/fphys.2019.01615.
  • Choubey, M., R. Chaube, and K. P. Joy. 2015. Toxic Effects of Lead Nitrate Pb(NO3)2 on Testis in the Catfish Heteropneustes fossilis. Pharmacologia 6 (2):63–72. doi:10.5567/pharmacologia.2015.63.72.
  • Cuevas, N., I. Zorita, J. Franco, P. M. Costa, and J. Larreta. 2016. Multi-organ histopathology in gobies for estuarine environmental risk assessment: A case study in the Ibaizabal estuary (SE Bay of Biscay). Estuarine, Coastal and Shelf Science 179:145–54. doi:10.1016/j.ecss.2015.11.023.
  • Dasmahapatra, A. K., A. K. Ray, and A. K. Medda. 1981. Temperature dependent action of estrogen in Singi fish (Heteropneustes fossilis Bloch). Endokrinologie 78 (1):107–10.
  • Davies, O. A., M. E. Allison, and H. S. Uyi. 2006. Bioaccumulation of heavy metals in water, sediment and periwinkle (Tympanotonus fuscatus var radula) from the Elechi Creek, Niger Delta. African Journal of Biotechnology 5 (10):968–73. doi:10.5897/AJB05.387.
  • DuBose, T. P., C. L. Atkinson, C. C. Vaughn, and S. W. Golladay. 2019. Drought-Induced, punctuated loss of freshwater Mussels Alters ecosystem function across temporal scales. Frontiers in Ecology and Evolution 7:274. doi:10.3389/fevo.2019.00274.
  • Elliott, P., D. C. Aldridge, and G. D. Moggridge. 2008. Zebra mussel filtration and its potential uses in industrial water treatment. Water Research 42 (6):1664–74. doi:10.1016/j.watres.2007.10.020.
  • El-Moselhy, K. M., A. I. Othman, H. Abd El-Azem, and M. E. A. El-Metwally. 2014. Bioaccumulation of heavy metals in some tissues of fish in the Red Sea, Egypt. Egyptian Journal of Basic and Applied Sciences 1 (2):97–105. doi:10.1016/j.ejbas.2014.06.001.
  • Elnabris, K. J., S. K. Muzyed, and N. M. El-Ashgar. 2013. Heavy metal concentrations in some commercially important fishes and their contribution to heavy metals exposure in Palestinian people of Gaza Strip (Palestine). Journal of the Association of Arab Universities for Basic and Applied Sciences 13 (1):44–51. doi:10.1016/j.jaubas.2012.06.001.
  • Faheem, M., N. Jahan, and K. P. Lone. 2016. Histopathological effects of bisphenol-a on liver, kidneys and gills of Indian major carp, Catla catla (Hamilton, 1822). Journal of Animal and Plant Sciences 26 (2):514–22.
  • Fatma, S., and I. Ahmed. 2020. Effect of water temperature on protein requirement of Heteropneustes fossilis (Bloch) fry as determined by nutrient deposition, hemato-biochemical parameters and stress resistance response. Fisheries and Aquatic Sciences 23 (1):1. doi:10.1186/s41240-020-0147-y.
  • Ferdaushy, M. H., and M. M. Alam. 2015. Length–length and length-weight relationships and condition factor of nine freshwater fish species of Nageshwari, Bangladesh. International Journal of Aquatic Biology 3 (3):149–54.
  • Filgueiras, A. V., I. Lavilla, and C. Bendicho. 2004. Development of fast thermal programs in electrothermal atomic absorption spectrometry using hot injection and removal of the ashing stage for determination of heavy metals in sequential extracts from sediments. Analytica Chimica Acta 508 (2):217–23. doi:10.1016/j.aca.2003.12.004.
  • Friedmann, A. S., M. C. Watzin, T. Brinck-Johnsen, and J. C. Leiter. 1996. Low levels of dietary methylmercury inhibit growth and gonadal development in juvenile walleye (Stizostedion vitreum). Aquatic Toxicology 35 (3):265–78. doi:10.1016/0166-445X(96)00796-5.
  • Gagné, F., C. Gagnon, P. Turcotte, and C. Blaise. 2007. Changes in metallothionein levels in freshwater mussels exposed to urban wastewaters: Effects from exposure to heavy metals? Biomarker Insights 2:107–16. doi:10.1177/117727190700200012.
  • Ghaedi, M., A. Shokrollahi, A. H. Kianfar, A. S. Mirsadeghi, A. Pourfarokhi, and M. Soylak. 2008. The determination of some heavy metals in food samples by flame atomic absorption spectrometry after their separation-preconcentration on bis salicyl aldehyde, 1,3 propan diimine (BSPDI) loaded on activated carbon. Journal of Hazardous Materials 154 (13):128–34. doi:10.1016/j.jhazmat.2007.10.003.
  • Hameed, P. S., and A. I. M. Raj. 1990. Freshwater Mussel, Lamellidens Marginalis (Lamarck) (Mollusca: Bivalvia: Unionidae) as an indicator of river pollution. Chemistry and Ecology 4 (2):57–64. doi:10.1080/02757549008035965.
  • Haque, M. S., M. M. Hasan, M. Maniruzzaman, M. Aktaruzzaman, M. A. Zubair, and M. M. Rahman. 2017. Metabolic alterations in liver of fresh water fish, C. punctata exposed to arsenic: An adverse and adaptive response to the environment. International Journal of Agricultural Research, Innovation and Technology 6 (2):87–94. doi:10.3329/ijarit.v6i2.31711.
  • Hedayati, A. 2016. Liver as a target organ for eco-toxicological studies. Journal of Coastal Zone Management 9 (3):6–7. doi:10.4172/2473-3350.1000e118.
  • Htun-Han, M. 1978. The reproductive biology of the dab Limanda limanda (L.) in the North Sea: Seasonal changes in the ovary. Journal of Fish Biology 13 (3):351–59. doi:10.1111/j.1095-8649.1978.tb03443.x.
  • Islam, M. S., M. K. Ahmed, M. Habibullah-Al-Mamun, and S. Masunaga. 2015. Assessment of trace metals in fish species of urban rivers in Bangladesh and health implications. Environmental Toxicology and Pharmacology 39 (1):347–57. doi:10.1016/j.etap.2014.12.009.
  • Jacquin, L., Q. Petitjean, J. Côte, P. Laffaille, and S. Jean. 2020. Effects of pollution on fish behavior, personality, and cognition: Some research perspectives. Frontiers in Ecology and Evolution 8:86. doi:10.3389/fevo.2020.00086.
  • Jana, B. B., and S. Das. 1997. Potential of freshwater mussel (Lamellidens marginalis) for cadmium clearance in a model system. Ecological Engineering 8 (3):179–93. doi:10.1016/S0925-8574(97)00259-0.
  • Javed, M., I. Ahmad, A. Ahmad, N. Usmani, and M. Ahmad. 2016. Studies on the alterations in haematological indices, micronuclei induction and pathological marker enzyme activities in Channa punctatus (spotted snakehead) perciformes, channidae exposed to thermal power plant effluent. SpringerPlus 5 (1):761. doi:10.1186/s40064-016-2478-9.
  • Jayakumar, N., T. Francis, P. Jawahar, C. B. T. Rajagopalsamy, R. Santhakumar, and A. Subburaj. 2016. Acute cadmium toxicity induced impairments in the liver and kidney of freshwater catfish, Heteropneustes fossilis (Bloch). Indian Journal of Science and Technology 9 (8). doi: 10.17485/ijst/2016/v9i8/82144.
  • Kent, J., M. Koban, and C. L. Prosser. 1988. Cold-acclimation-induced protein hypertrophy in channel catfish and green sunfish. Journal of Comparative Physiology B 158 (2):185–98. doi:10.1007/BF01075832.
  • Khan, M. I., M. Khisroon, A. Khan, N. Gulfam, M. Siraj, F. Zaidi, A. Ahmadullah, S. H. Fatima, S. Noreen, S. Z. A. Hamidullah, et al. 2018. Bioaccumulation of heavy metals in water, sediments, and tissues and their histopathological effects on Anodonta cygnea (Linea, 1876) in Kabul River, Khyber Pakhtunkhwa, Pakistan. BioMed Research International 2018:1910274. doi:10.1155/2018/1910274.
  • Khan, M. I., M. Zahoor, A. Khan, N. Gulfam, and M. Khisroon. 2019. Bioaccumulation of heavy metals and their genotoxic effect on freshwater mussel. Bulletin of Environmental Contamination and Toxicology 102 (1):52–58. doi:10.1007/s00128-018-2492-4.
  • Lugert, V., G. Thaller, J. Tetens, C. Schulz, and J. Krieter. 2016. A review on fish growth calculation: Multiple functions in fish production and their specific application. Reviews in Aquaculture 8 (1):30–42. doi:10.1111/raq.12071.
  • Mahboob, S., H. F. A. Al-Balawi, F. Al-Misned, S. Al-Quraishy, and Z. Ahmad. 2014. Tissue metal distribution and risk assessment for important fish species from Saudi Arabia. Bulletin of Environmental Contamination and Toxicology 92 (1):61–66. doi:10.1007/s00128-013-1139-8.
  • Mahboob, S., K. A. Al-Ghanim, H. F. Al-Balawi, F. Al-Misned, and Z. Ahmed. 2020. Toxicological effects of heavy metals on histological alterations in various organs in Nile tilapia (Oreochromis niloticus) from freshwater reservoir. Journal of King Saud University Science and Technology 32 (1):970–73. doi:10.1016/j.jksus.2019.07.004.
  • Makori, A. J., P. O. Abuom, R. Kapiyo, D. N. Anyona, and G. O. Dida. 2017. Effects of water physico-chemical parameters on tilapia (Oreochromis niloticus) growth in earthen ponds in Teso North Sub-County, Busia County. Fisheries and Aquatic Sciences 20 (1). doi: 10.1186/s41240-017-0075-7.
  • Mandal, S., and A. T. A. Ahmed. 2014. Copper, Cadmium, Chromium and lead bioaccumulation in Stinging Catfish, Heteropneustes fossilis (Bloch) and freshwater mussel, Lamellidens corrianus Lia and to compare their concentration in sediments and water of Turag river. Journal of the Asiatic Society of Bangladesh, Science 39 (2):231–38. doi:10.3329/jasbs.v39i2.17862.
  • Mariné Oliveira, G. F., M. C. M. Do Couto, M. de Freitas Lima, and T. C. B. Do Bomfim. 2016. Mussels (Perna perna) as bioindicator of environmental contamination by Cryptosporidium species with zoonotic potential. International Journal for Parasitology. Parasites and Wildlife 5 (1):28–33. doi:10.1016/j.ijppaw.2016.01.004.
  • Maurya, P. K., D. S. Malik, K. K. Yadav, A. Kumar, S. Kumar, and H. Kamyab. 2019. Bioaccumulation and potential sources of heavy metal contamination in fish species in River Ganga basin: Possible human health risks evaluation. Toxicology Reports 6:472–81. doi:10.1016/j.toxrep.2019.05.012.
  • McKenzie, D. J., E. Garofalo, M. J. Winter, S. Ceradini, F. Verweij, N. Day, R. Hayes, R. van der Oost, P. J. Butler, J. K. Chipman, et al. 2007. Complex physiological traits as biomarkers of the sub-lethal toxicological effects of pollutant exposure in fishes. Philosophical Transactions of the Royal Society B: Biological Sciences 362 (1487):2043–59. doi:10.1098/rstb.2007.2100.
  • Mersch, J., E. Morhain, and C. Mouvet. 1993. Laboratory accumulation and depuration of copper and cadmium in the freshwater mussel Dreissena polymorpha and the aquatic moss Rhynchostegium riparioides. Chemosphere 27 (8):1475–85. doi:10.1016/0045-6535(93)90242-W.
  • Mohammadnabizadeh, S., A. Pourkhabbaz, and R. Afshari. 2014. Analysis and determination of trace metals (Nickel, Cadmium, Chromium, and Lead) in tissues of Pampus argenteus and Platycephalus indicus in the Hara Reserve, Iran. Journal of Toxicology 2014:576496. doi:10.1155/2014/576496.
  • Montiglio, P.-O., and R. Royauté. 2014. Contaminants as a neglected source of behavioural variation. Animal Behaviour 88:29–35. doi:10.1016/j.anbehav.2013.11.018.
  • Mouabad, A., M. A. Fdil, A. Maarouf, and J. C. Pihan. 2001. Pumping behaviour and filtration rate of the freshwater mussel Potomida littoralis as a tool for rapid detection of water contamination. Aquatic Ecology 35 (1):51–60. doi:10.1023/A:1011499325045.
  • Mozsár, A., G. Boros, P. Sály, L. Antal, and S. A. Nagy. 2015. Relationship between Fulton’s condition factor and proximate body composition in three freshwater fish species. Journal of Applied Ichthyology 31 (2):315–20. doi:10.1111/jai.12658.
  • Muchlisin, Z. A., M. Musman, and M. N. Siti Azizah. 2010. Length-weight relationships and condition factors of two threatened fishes, Rasbora tawarensis and Poropuntius tawarensis, endemic to Lake Laut Tawar, Aceh Province, Indonesia. Journal of Applied Ichthyology 26 (6):949–53. doi:10.1111/j.1439-0426.2010.01524.x.
  • Muñoz, L., P. Weber, V. Dressler, B. Baldisserotto, and F. A. Vigliano. 2015. Histopathological biomarkers in juvenile silver catfish (Rhamdia quelen) exposed to a sublethal lead concentration. Ecotoxicology and Environmental Safety 113:241–47. doi:10.1016/j.ecoenv.2014.11.036.
  • Mustafa, S. A. 2020. Histopathology and heavy metal bioaccumulation in some tissues of Luciobarbus xanthopterus collected from Tigris River of Baghdad, Iraq. The Egyptian Journal of Aquatic Research 46 (2):123–29. doi:10.1016/j.ejar.2020.01.004.
  • Naimo, T. J. 1995. A review of the effects of heavy metals on freshwater mussels. Ecotoxicology 4 (6):341–62. doi:10.1007/BF00118870.
  • Neeratanaphan, L., C. Kamollerd, P. Suwannathada, P. Suwannathada, and B. Tengjaroenkul. 2020. Genotoxicity and oxidative stress in experimental hybrid catfish exposed to heavy metals in a municipal landfill reservoir. International Journal of Environmental Research and Public Health 17 (6):1–14. doi:10.3390/ijerph17061980.
  • Nobles, T., Y. Zhang, and S. Duperron. 2015. Survival, growth and condition of freshwater mussels: Effects of municipal wastewater effluent. PLOS ONE 10 (6):e0128488. doi:10.1371/journal.pone.0128488.
  • Olaifa, F., A. Olaifa, A. Adelaja, and A. Owolabi. 2010. Heavy metal contamination of Clarias gariepinus from a lake and fish farm in Ibadan, Nigeria. African Journal of Biomedical Research 7 (3):3. doi:10.4314/ajbr.v7i3.54185.
  • Olufeagba, S., A. Raji, K. Majumda, V. Ravinda, and V. Okomoda. 2015. Induced Breeding and early development of stinging catfish, Heteropneustes Fossilis (Bloch) (Siluridae). International Journal of Aquaculture 5 (13):1–7. doi:10.5376/ija.2015.05.0013.
  • Olvera-Novoa, M. A., S. G. Campos, M. G. Sabido, and C. A. Martínez Palacios. 1990. The use of alfalfa leaf protein concentrates as a protein source in diets for tilapia (Oreochromis mossambicus). Aquaculture 90 (3):291–302. doi:10.1016/0044-8486(90)90253-J.
  • Palaniappan, P. R., S. Sabhanayakam, N. Krishnakumar, and M. Vadivelu. 2008. Heavy metal contamination of Clarias gariepinus from a lake and fish farm in Ibadan, Nigeria. Food and Chemical Toxicology 46 (7):2440–44. doi:10.1016/j.fct.2008.03.028.
  • Panase, P., and K. Mengumphan. 2015. Growth performance, length-weight relationship and condition factor of backcross and reciprocal hybrid catfish reared in net cages. International Journal of Zoological Research 11 (2):57–64. doi:10.3923/ijzr.2015.57.64.
  • Pechsiri, J., and A. Yakupitiyage. 2005. A comparative study of growth and feed utilization efficiency of sex-reversed diploid and triploid Nile tilapia, Oreochromis niloticus L. Aquaculture Research 36 (1):45–51. doi:10.1111/j.1365-2109.2004.01182.x.
  • Pham, T. L. 2018. Accumulation, depuration and risk assessment of cadmium (Cd) and lead (Pb) in clam (Corbicula fluminea) (O. F. Müller, 1774) under laboratory conditions. Iranian Journal of Fisheries Sciences 19 (3):1062–72. doi:10.22092/ijfs.2018.116877.
  • Rahnama, R., A. Javanshir, and A. Mashinchian. 2010. The effects of lead bioaccumulation on filtration rate of zebra mussel (Dreissena polymorpha) from Anzali wetland – Caspian Sea. Toxicological & Environmental Chemistry 92 (1):107–14. doi:10.1080/02772240902744444.
  • Rath, S., and B. N. Misra. 1981. Toxicological effects of dichlorvos (DDVP) on brain and liver acetylcholinesterase (AChE) activity of Tilapia mossambica, Peters. Toxicology 19 (3):239–45. doi:10.1016/0300-483x(81)90133-5.
  • Ross, S. W., D. A. Dalton, S. Kramer, and B. L. Christensen. 2001. Physiological (antioxidant) responses of estuarine fishes to variability in dissolved oxygen. Comparative Biochemistry and Physiology-C Toxicology and Pharmacology 130 (3):289–303. doi:10.1016/S1532-0456(01)00243-5.
  • Samad, M., and A. Bhuiyan. 2017. Stocking density of threatened cat fish Heteropneustes fossilis (Bloch, 1792) in seasonal ponds of Rajshahi, Bangladesh. Bangladesh Journal of Scientific and Industrial Research 52 (4):253–62. doi:10.3329/bjsir.v52i4.34766.
  • Saxena, P. K., and R. Sandhu. 1994. Influence of temperature on ovarian recrudescence in the Indian catfish. Heteropneustes Fossilis. Journal of Fish Biology 44 (1):168–71. doi:10.1111/j.1095-8649.1994.tb01593.x.
  • Schmitt, C. J., W. G. Brumbaugh, and T. W. May. 2007. Accumulation of metals in fish from lead-zinc mining areas of southeastern Missouri, USA. Ecotoxicology and Environmental Safety. doi:10.1016/j.ecoenv.2006.11.002.
  • Schmitt, C. J., J. J. Whyte, W. G. Brumbaugh, and D. E. Tillitt. 2005. Biochemical effects of lead, zinc, and cadmium from mining on fish in the tri-states district of northeastern Oklahoma, USA. Environmental Toxicology and Chemistry 24 (6):1483–95. doi:10.1897/04-332R.1.
  • Shafiuddin Ahmed, A. S., S. Sultana, A. Habib, H. Ullah, N. Musa, M. Belal Hossain, M. Mahfujur Rahman, and S. M. Shafiqul Islam. 2019. Bioaccumulation of heavy metals in some commercially important fishes from a tropical river estuary suggests higher potential health risk in children than adults. PLoS ONE 14 (10):1–21. doi:10.1371/journal.pone.0219336.
  • Shukla, A., V. I. Kaur, P. Kumar, D. Ansal, M, A. Dhawan, and V. Mishra. 2018. Utilization of Dietary soybean meal and groundnut meal as fish meal replacement in Heteropnuestes fossilis (Bloch.). International Journal of Current Microbiology and Applied Sciences 7 (6):734–46. doi:10.20546/ijcmas.2018.706.086.
  • Siligato, S., and J. Böhmer. 2001. Using indicators of fish health at multiple levels of biological organization to assess effects of stream pollution in southwest Germany. Journal of Aquatic Ecosystem Stress and Recovery 8 (3):371–86. doi:10.1023/A:1012954726016.
  • Spooner, D. E., and C. C. Vaughn. 2006. Context-dependent effects of freshwater mussels on stream benthic communities. Freshwater Biology 51 (6):1016–24. doi:10.1111/j.1365-2427.2006.01547.x.
  • Srivastav, A. K., R. Rai, N. Suzuki, D. Mishra, and S. K. Srivastav. 2013. Effects of lead on the plasma electrolytes of a freshwater fish, Heteropneustes fossilis. International Aquatic Research 5 (1):4. doi:10.1186/2008-6970-5-4.
  • Sultana, T., K. Butt, S. Sultana, K. A. Al-Ghanim, R. Mubashra, N. Bashir, Z. Ahmed, A. Ashraf, and S. Mahboob. 2016. Histopathological changes in liver, gills and intestine of Labeo rohita inhabiting industrial waste contaminated water of River Ravi. Pakistan Journal of Zoology 48 (4):1171–77.
  • Tao, Y., Z. Yuan, H. Xiaona, and M. Wei. 2012. Distribution and bioaccumulation of heavy metals in aquatic organisms of different trophic levels and potential health risk assessment from Taihu lake, China. Ecotoxicology and Environmental Safety 81:55–64. doi:10.1016/j.ecoenv.2012.04.014.
  • Van-Dyk, J. C., and G. M. Pieterse. 2008. A histo-morphological study of the testis of the sharptooth catfish (Clarias gariepinus) as reference for future toxicological assessments. Journal of Applied Ichthyology 24 (4):415–22. doi:10.1111/j.1439-0426.2008.01127.x.
  • Vasal, S., and B. I. Sundararaj. 1978. Thermal tolerance and preference of the Indian catfish Heteropneustes fossilis. Environmental Biology of Fishes 3 (3):309–15. doi:10.1007/BF00001458.
  • Weis, J. S., G. Smith, T. Zhou, C. Santiago-Bass, and P. Weis. 2001. Effects of Contaminants on Behavior: Biochemical Mechanisms and Ecological Consequences: Killifish from a contaminated site are slow to capture prey and escape predators; altered neurotransmitters and thyroid may be responsible for this behavior, which ma. BioScience 51 (3):209–17. doi:10.1641/0006-3568(2001)051[0209:EOCOBB]2.0.CO;2.
  • Xu, S., and S. Tao. 2004. Coregionalization analysis of heavy metals in the surface soil of inner Mongolia. Science of the Total Environment 320 (1):73–87. doi:10.1016/S0048-9697(03)00450-9.
  • Yilmaz, F., N. Özdemir, A. Demirak, and A. L. Tuna. 2007. Heavy metal levels in two fish species Leuciscus cephalus and Lepomis gibbosus. Food Chemistry 100 (2):830–35. doi:10.1016/j.foodchem.2005.09.020.
  • Zafar, N., and M. Khan. 2018. Determination of dietary phosphorus requirement of stinging catfish Heteropneustes fossilis based on feed conversion, growth, vertebrae phosphorus, whole body phosphorus, haematology and antioxidant status. Aquaculture Nutrition 24 (5):1577–86. doi:10.1111/anu.12794.
  • Zafar, N., and M. Khan. 2019. Growth, body composition, mineralisation and Na+/K+-ATPase activity of fingerling Heteropneustes fossilis (Bloch) fed diets with different levels of potassium. Archives of Animal Nutrition 73 (6):505–16. doi:10.1080/1745039X.2019.1658502.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.