9,488
Views
563
CrossRef citations to date
0
Altmetric
Critical Review

Separation and Capture of CO2 from Large Stationary Sources and Sequestration in Geological Formations—Coalbeds and Deep Saline Aquifers

, , , &
Pages 645-715 | Published online: 22 Feb 2012

References

  • Fourier, J. Mem. de l’Ac. R. d. Sci. de l’Inst. de France 1827, + (vii).
  • Pouillet. Comptes Rendus; vii ed.; 1838.
  • Arrhenius, S. On the Influence of Carbonic Acid in the Air Upon the Temperature of the Ground; Philosophical Magazine 1896, 41, 237-276.
  • Halmann, M.M.; Steinberg, M. Greenhouse Gas Carbon Dioxide Mitigation: Science and Technology; Lewis Publishers, CRC Press: Boca Raton, FL, 1999.
  • Global Warming: Emissions: National: Global Warming Potentials; U.S. Environmental Protection Agency: Washington, DC, 2002. Available at: http://yosemite.epa.gov/oar/globalwarming.nsf/550d4b46b29f68a6852 568660081f938/85256bd400517e4885256bfe0057a223?OpenDocument.
  • U.S. Environmental Protection Agency. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2000; EPA 430-R-02–003; Office of Atmospheric Programs: Washington, DC, 2002.
  • Revised Guidelines for the Preparation of National Communications by Parties Included in Annex I to the Convention; Report of the Conference of the Parties at Its Second Session; FCCC 1996 Framework Convention on Climate Change: Geneva, 1996.
  • IPCC 2001, Climate Change 2001: A Scientific Basis, Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2003.
  • Global Warming: Climate; U.S. Environmental Protection Agency: Washington, DC, 2002. Available at: http://yosemite.epa.gov/oar/globalwarming.nsf/content/climate.html.
  • Antarctic Ice Shelf Collapses; National Snow and Ice Data Center: Boulder, CO, 2002. Available at: http://nsidc.org/iceshelves/larsenb2002/.
  • Meier, M.F.; Dyurgerov, M.B. How Alaska Affects the World; Science 2002, 297, 350-351.
  • Fitter, A.H.; Fitter, R.S.R. Rapid Changes in Flowering Time in British Plants; Science 2002, 296, 1689-1691.
  • Greenhouse Issues 1992, Issue 3.
  • Global Warming: Emissions: International; U.S. Environmental Protection Agency: Washington, DC, 2002. Available at: http://yosemite. epa.gov/oar/globalwarming.nsf/content/EmissionsInternational.html.
  • Adams, D. Technologies for Activities Implemented Jointly; Greenhouse Issues 1997, Issue 31. Available at: http://www.ieagreen.org.uk/july31.htm.
  • Costa Rica’s Carbon Is Certified for Trading; Greenhouse Issues 1998, Issue 36. Available at: http://www.ieagreen.org.uk/may36.htm.
  • Greenhouse Issues 1995, Issue 19. Available at: http://www.ieagreen. org.uk/may36.htm.
  • Davison, J.E.; Freund, P. A Comparison of Sequestration of CO2 by Forestry and Capture from Power Stations. In Proceedings of the 4th International Conference on Greenhouse Gas Control Technologies, Inter-laken, Switzerland, 1998; Elsevier: Oxford, UK, 1999.
  • Cox, P.M.; Betts, R.A.; Jones, C.D.; Spall, S.A.; Totterdell, I.J. Acceleration of Global Warming Due to Carbon-Cycle Feedbacks in a Coupled Climate Model; Nature 2000, 408, 184-187.
  • Melillo, J.M.; Steudler, P.A.; Aber, J.D.; Newkirk, K.; Lux, H.; Bowls, F.P.; Catricala, C.; Magill, A.; Ahrens, T.; Morrisseau, S. Soil Warming and Carbon-Cycle Feedbacks to the Climate System; Science 2002, 298, 2173-2176.
  • Kaya, Y.; et al. A Grand Stategy for Global Warming. In Tokyo Conference on Global Environment; 1989.
  • Kaya, Y. Impact of Carbon Dioxide Emission Control on GNP Growth: Interpretation of Proposed Scenarios; IPCC Energy and Industry Subgroup, Response Strategies Working Group: Paris, 1990.
  • Yamaji, K.R.; Matsuhashi, R.; Nagata, Y.; Kaya; Y. An Integrated System for CO2 /Energy/GNP Analysis: Case Studies on Economic Measures for CO2 Reduction in Japan. Presented at Workshop on CO2 Reduction and Removal: Measures for the Next Century; Laxenburg, Austria, 1991.
  • Kaya, Y. The Role of CO2 Removal and Disposal; Energy Convers. Mgmt. 1995, 36, 375-380.
  • Hoffert, M.I.; Caldeira, K.; Jain, A.K.; Haites, E.F.; Harvey, L.D.D., Potter, S.E.; Schlesinger, M.E.; Schneider, S.H.; Watts, R.G.; Wigley, T.M.L., Wuebbles, D.J. Energy Implications of Future Stabilization of Atmospheric CO2 Content; Nature 1998, 395, 881-884.
  • Intergovernmental Panel on Climate Change. IPCC Special Report on Emissions Scenarios—2.4. Analysis of Literature; Cambridge University Press: Cambridge, NY, 2000. Available at: http://www.grida.no/climate/ipcc/emission/038.htm.
  • Okanagan University College Fundamentals of Physical Geography—9. Introduction to Biogeography and Ecology—(r) The Carbon Cycle; OUC Department of Geography: Kelowna, British Columbia, Canada, 2000. Available at: http://www.geog.ouc.bc.ca/physgeog/contents/9r.html.
  • Hitchon, B. Aquifer Disposal of Carbon Dioxide: Hydrodynamic and Mineral Trapping—Proof of Concept; Geoscience Publishing Ltd.: Sherwood Park, Alberta, Canada, 1996.
  • Understanding the Global Carbon Cycle; The Woods Hole Research Center: Woods Hole, MA, 2003. Available at: http://www.whrc.org/science/carbon/carbon.htm.
  • Berner, R.A.; Lasaga, A.C. Modeling the Geochemical Carbon Cycle; Sci. Am. 1989, 260, 74-81.
  • Kerrick, D. Present and Past Non-Anthropogenic CO2 Degassing From Solid Earth; Review of Geophysics 2001, 39, 565-585.
  • Hoffert, M.I.; Caldeira, K.; Benford, G.; Criswell, D.R.; Green, C.; Herzog, H.; Jain, A.K.; Kheshgi, H.S.; Lackner, K.S.; Lewis, J.S.; et al. Advanced Technology Paths to Global Climate Stability: Energy for a Greenhouse Planet; Science 2002, 298, 981-987.
  • Audus, H. Technologies for CO2 Emission Reduction. Presented at International Conference on Sustainable Future of the Global System, Tokyo, Japan, 1999. Available at: http://www.ieagreen.org.uk/audus99.htm.
  • Marchetti, C. Nuclear Plants and Nuclear Riches; Nucl. Sci. Eng. 1985, 90, 521-526.
  • Audus, H.; Kaarstad, O.; Kowal, M. Decarbonization of Fossil Fuels: Hydrogen as an Energy Carrier. In Proceedings of the Eleventh World Hydrogen Energy Conference: Hydrogen Energy Progress XI; International Association for Hydrogen Energy, Ed.; 1996; pp 525-534.
  • Bachu, S. Sequestration of CO2 in Geological Media in Response to Climate Change: Road Map for Site Selection Using the Transform of the Geological Space into the CO2 Phase Space; Energy Convers. Mgmt. 2002, 43, 87-102.
  • Klara, S.; Beecy, D.; Kuuskraa, V.; DiPietro, P. Economic Benefits of a Technology Strategy and R&D Program in Carbon Sequestration. In Proceedings of GHGT-6, Kyoto, 2002.
  • Carbon Sequestration Research and Development; DOE/SC/FE-1; U.S. Department of Energy: Washington, DC, 1999. Available at: http://www.ornl.gov/carbon_sequestration/.
  • Korboel, R.; Kaddour, A. Sleipner Vest CO2 Disposal—Injection of Removed CO2 into the Utsira Formation; Energy Convers. Mgmt. 1995, 36 (6–9), 509-512.
  • Baklid, A.; Korbol, R.; Owren, G. Sleipner Vest CO2 Disposal, CO2 Injection into a Shallow Underground Aquifer. Presented at SPE Annual Technical Conference and Exhibition; Society of Petroleum Engineers: Denver, CO, 1996.
  • Herzog, H.; Drake, E.; Adams, E. CO2 Capture, Reuse, and Storage Technologies for Mitigating Global Climate Change: A White Paper; Final Report, DOE Contract No. DE-AF22–96PC01257; Massachusetts Institute of Technology, Energy Laboratory: Cambridge, MA, 1997. Available at: http://sequestration.mit.edu/pdf/WhitePaper.pdf.
  • Herzog, H.; Golomb, D.; Zemba, S. Feasibility, Modeling and Economics of Sequestering Power Plant CO2 Emissions in the Deep Ocean; Envir. Prog. 1991, 10 (1), 64-74.
  • United Kingdom Department of Trade and Industry. Carbon Dioxide Capture and Storage; IEA Report DTI/Pub URN 00/1081; UKDTI Cleaner Coal Technology Programme: London, UK, 2001. Available at: http://www.dti.gov.uk/energy/coal/cfft/cct/pub/tsr016.pdf.
  • Herzog, H.; Drake, E.; Tester, J.; Rosenthal, R. A Research Needs Assessment for the Capture, Utilization, and Disposal of Carbon Dioxide from Fossil Fuel-Fired Power Plants; Final Report DOE Contract No. DEFG02–92ER30194; Massachusetts Institute of Technology, Energy Laboratory: Cambridge, MA, 1993.
  • Booras, G.S.; Smelser, S.C. An Engineering and Economic Evaluation of CO2 Removal from Fossil-Fuel-Fired Power Plants; Energy 1991, 16 (11/12), 1295.
  • Mitchel, S.C. Hot Gas Cleanup of Sulphur, Nitrogen, and Minor and Trace Elements; IEA Report ISBN 92–9029-317–9; International Energy Agency, Coal Research: London, UK, 1998.
  • Riemer, P.; Audus, H.; Smith, A. Carbon Dioxide Capture from Power Stations; IEA Report ISBN 1–898373-15–9; International Energy Agency, Greenhouse Gas R&D Programme: Cheltenham, UK, 1994. Available at: http://www.ieagreen.org.uk/sr2p.htm.
  • Wolsky, A.M.; Daniels, E.J.; Jody, B.J. CO2 Capture from the Flue Gas of Conventional Fossil- Fuel-Fired Power Plants; Envir. Progress 1994, 13 (3), 214-219.
  • Park, S.B.; Lee, H.; Lee, K.H. Solubilities of Carbon Dioxide in Aqueous Potassium Carbonate Solutions Mixed with Physical Solvents; Int. J. Thermophys. 1998, 19 (5), 1421-1428.
  • Meisen, A.; Shuai, X. Research and Development Issues in CO2 Capture; Energy Convers. Mgmt. 1997, 38, S37–S42.
  • Herzog, H. An Introduction to CO2 Separation and Capture Technologies. Presented at U.S. Department of Energy Workshop, Houston, TX, 1999.
  • Kohl, A.L.; Nielsen, R.B. Gas Purification, 5th ed.; Gulf Publishing: Houston, TX, 1997.
  • Smith, I. CO2 Reduction—Prospects for Coal; IEA Report ISBN 92–9029-336–5; International Energy Agency, Coal Research: London, UK, 1999.
  • Kane, R.L.; Klein, D.E. Carbon Sequestration: An Option for Mitigating Global Climate Change; CEP 2001, 97 (6), 44-52.
  • Trotter, C. Experience with British Gas Hot Potash Promoter LRS 10; Ammonia Plant Saf. Relat. Facil. 1994, 34.
  • Chapel, D.G.; Mariz, C.L.; Ernest, J. Recovery of CO2 from Flue Gases: Commercial Trends. Presented at the Canadian Society of Chemical Engineers Annual Meeting, Saskatoon, Saskatchewan, Canada, 1999.
  • Leci, C.L.; Goldthorpe, S.H. Assessment of CO2 Removal from Power Station Flue Gas; Energy Convers. Mgmt. 1992, 33 (5–8), 477.
  • Mimura, T.; Simayoshi, H.; Suda, T.; Iijima, M.; Mituoka, S. Development of Energy-Saving Technology for Flue Gas Carbon Dioxide Recovery in Power Plants; Energy Convers. Mgmt. 1997, 38, S57–S62.
  • Chakma, A. CO2 Capture Processes—Opportunities for Improved Energy Efficiencies; Energy Convers. Mgmt. 1997, 38, S51–S56.
  • Plasynski, S.I.; Chen, Z.Y. Review of CO2 Capture Technologies and Some Improvement Opportunities; Preprint Paper Am. Chem. Soc. Div. Fuel Chem. 2000, 45 (4), 650-655.
  • Suda, T.; Fujii, M.; Yoshida, K.; Iijima M.; Seto, T.; Mitsuoka, S. Development of Flue Gas Carbon Dioxide Recovery Technology; Energy Convers. Mgmt. 1992, 33 (5–8), 317-324.
  • Sartori, G.; Ho, W.S.; Savage, D.W.; Chludzinski, G.R.; Wiechert, S. Sterically Hindered Amines for Acid-Gas Absorption. Presented at the 1988 AIChE Spring National Meeting, New Orleans, 1988; Paper 69D.
  • Veawab, A.; Tontiwachwuthikul, P.; Chakma, A. Influence of Process Parameters on Corrosion Behavior in a Sterically Hindered Amine-CO2 System; Ind. Eng. Chem. Res. 1999, 38, 310-315.
  • Rochelle, G.T.; Bishnoi, S.; Dang, H.; Santos, J. Research Needs for CO2 Capture from Flue Gas by Aqueous Absorption/Stripping; DE-AF26–99FT01029; University of Texas: Austin, TX, 2001.
  • Aroonwilas, A.; Tontiwachwuthikul, P. Mass Transfer Studies of High Performance Structured Packing for CO2 Separation Processes; Energy Convers. Mgmt. 1997, 38, S75–S80.
  • Yeh, J.T.; Pennline, H.W.; Resnik, K.P. Study of CO2 Absorption and Desorption in a Packed Column. Energy Fuels 2001, 15 (2), 274-278.
  • Mimura, T.; Matsumoto, K.; Iijima, M.; Mitsuoka, S. Development and Application of Flue Gas Carbon Dioxide Recovery Technology. In Proceedings of GHGT-5, Cairns, Australia, 2000.
  • Chakma, A. Formulated Solvents: New Opportunities for Energy Efficient Separation of Acid Gases; Energy Sources 1999, 21 (1–2), 51-62.
  • Niswander, R.H.; Edwards, D.J.; Dupaart, M.S.; Tse, J.P. A More Energy Efficient Product for Carbon Dioxide Separation; Separation Science Technol. 1993, 28 (1–3), 565-578.
  • Tontiwachwuthikul, P.; Chakma, A. R&D on High Efficiency CO2 Separation Processes for Enhanced Oil Recovery at University of Regina; J. Canadian Petroleum Technol. 1997, 36 (2), 9.
  • Chakma, A. An Energy Efficient Mixed Solvent for the Separation of CO2 ; Energy Convers. Mgmt. 1995, 36 (6–9), 427-430.
  • Chakma, A.; Tontiwachwuthikul, P. Designer Solvents for Energy Efficient CO2 Separation from Flue Gas Streams. In Proceedings of the 4th International Conference on Greenhouse Gas Control Technologies, Interlaken, Switzerland, 1998; Elsevier: Oxford, UK, 1999; pp 35-42.
  • Leci, C.L. Development Requirements for Absorption Processes for Effective CO2 Capture from Power Plants; Energy Convers. Mgmt. 1997, 38, S45–S50.
  • Veawab, A.; Tontiwachwuthikul, P.; Aroonwilas, A.; Chakma, A. Performance and Cost Analysis for CO2 Capture from Flue Gas Streams: Absorption and Regeneration Aspects. Presented at GHGT-6, Kyoto, 2002; Paper C4-5.
  • Song, J.H.; Yoon, J.H.; Lee, H. Solubility of Carbon Dioxide in Monoethanolamine [H11001] Ethylene Glycol [H11001] Water and Monoethanolamine [H11001] Poly(Ethylene Glycol) [H11001] Water; J. Chem. Eng. Data 1996, 41 (3), 497-499.
  • Leites, I.L. Thermodynamics of CO2 Solubility in Mixtures of Monoethanolamine with Organic Solvents and Water and Commercial Experience of Energy Saving Gas Purification Technology; Energy Convers. Mgmt. 1998, 39 (16–18), 1665-1674.
  • Mimura, T.; Nojo, T.; Iijima, M.; Yoshiyama, R.; Tanaka, H. Recent Developments in Flue Gas CO2 Recovery Technology. Presented at GHGT-6, Kyoto, 2002; Paper J2-3.
  • Feron, P.H.M.; Jansen, A.E. The Production of Carbon Dioxide from Flue Gas by Membrane Gas Absorption; Energy Convers. Mgmt. 1997, 38, S93–S98.
  • Dave, N.; Fookes, C.; Walters, C. Assessment of Novel Technologies for CO2 Capture and Separation. In Proceedings of the 18th Annual International Pittsburgh Coal Conference, Newcastle, Australia, 2001; Pittsburgh Coal Conference: Pittsburgh, PA, 2001.
  • Hanisch, C. Exploring Options for CO2 Capture and Management; Environ. Sci. Technol. 1999, 33 (3), 66-70.
  • Raterman, K.T.; McKellar, M.; Podgorney, A.; Stacey, D.; Turner, T.; Stokes, B.; Vranicar, J. A Vortex Contactor for Carbon Dioxide Separations. Presented at the 1st National Conference on Carbon Sequestration, Washington, DC, 2001; Paper 7b.3.
  • Chi, S.; Rochelle, G.T. Oxidative Degradation of Monoethanolamine; Ind. Eng. Chem. Res. 2002, 41 (17), 4178-4186.
  • Singh, D.J.; Croiset, E.; Douglas, P.L.; Douglas, M.A. A Techno-Economic Comparison of Amine Scrubbing vs. O2 /CO2 Recycle Combustion for CO2 Capture from Coal Fired Power Plants. Presented at the 18th Annual International Pittsburgh Coal Conference, Newcastle, Australia, 2001; Paper 5-3.
  • Simmonds, M.; Hurst, P.; Wilkinson, M.B.; Watt, C.; Roberts, C.A. A Study of Very Large Scale Post Combustion CO2 Capture at a Refining & Petrochemical Complex. Presented at GHGT-6, Kyoto, 2002; Paper B4-1.
  • Strazisar, B.R.; Anderson, R.R.; White, C.M. Degradation of Monoethanolamine Used in CO2 Capture from Flue Gas of a Coal-Fired Electric Power Generating Station; Abstracts Papers American Chemical Soc. 2002, 223 (054-FUEL).
  • Strazisar, B.R.; Anderson, R.R.; White, C.M. Degradation Pathways for Monoethanolamine in a CO2 Capture Facility; Energy Fuels 2003, in press.
  • Leci, C.L. Financial Implication on Power Generation Costs Resulting from the Parasitic Effect of CO2 Capture Using Liquid Scrubbing Technology from Power Station Flue Gases; Energy Convers. Mgmt. 1996, 37 (6–8), 915-921.
  • Bai, H.; Yeh, A.C. Removal of CO2 Greenhouse Gas by Ammonia Scrubbing; Ind. Eng. Chem. Res. 1997, 36 (6), 2490-2493.
  • Yeh, A.C.; Bai, H. Comparison of Ammonia and Monoethanolamine Solvents to Reduce CO2 Greenhouse Gas Emissions; Sci. Total Environ. 1999, 228, 121-133.
  • Yeh, J.T.; Pennline, H.W.; Resnik, K.P. Aqua Ammonia Process for Simultaneous Reduction of CO2 , SO2 , and NOx . Presented at the 19th Annual International Pittsburgh Coal Conference, Pittsburgh, PA, 2002; Paper 45-1.
  • Huang, H.; Chang, S.G.; Dorchak, T. Method to Regenerate Ammonia for the Capture of Carbon Dioxide; Energy Fuels 2002, 16 (4), 904-910.
  • Zheng, X.Y.; Diao, Y.F.; He, B.S.; Chen, C.H.; Xu, X.C.; Feng, W. Carbon Dioxide Recovery from Flue Gases by Ammonia Scrubbing. Presented at GHGT-6, Kyoto, 2002; Paper I4-5.
  • Li, X.; Hagaman, E.; Tsouris, C.; Lee, J.W. Removal of Carbon Dioxide from Flue Gas by Ammonia Carbonation in the Gas Phase; Energy Fuels 2003, 17 (1), 69-74.
  • Bates, E.D.; Mayton, R.D.; Ntai, I.; Davis, J.H. CO2 Capture by a Task-Specific Ionic Liquid; J. Am. Chem. Soc. 2002, 124 (6).
  • Shah, V.A. CO2 Removal from Ammonia Synthesis Gas with Selexol Solvent Process; Energy Progress 1988, 8 (2), 67-70.
  • Shah, V.A.; Huurdeman, T.L. Synthesis Gas Treating with Physical Solvent Process Using Selexol Process Technology; Ammonia Plant Safety 1990, 30, 216-224.
  • Koss, U.; Meyer, M. “Zero Emission IGCC” with Rectisol Technology. Presented at the 2002 Gasification Technologies Conference, San Francisco, CA.
  • Project Data on Eastman Chemical Company’s Chemical-from-Coal Complex in Kingsport, TN; U.S. DOE Contract No. DE-FC22–92PC90543, Draft Final Report; Eastman Chemical Co.: Kingsport, TN, 2002.
  • Dittus, M.; Johnson, D. The Hidden Value of Lignite Coal. Presented at the 2001 Gasification Technologies Conference, San Francisco, CA.
  • Hattenbach, R.P.; Wilson, M.; Brown, K.R. Capture of Carbon Dioxide from Coal Combustion and Its Utilization for Enhanced Oil Recovery. In Proceedings of the 4th International Conference on Greenhouse Gas Control Technologies, Interlaken, Switzerland, 1998; Elsevier: Oxford, UK, 1999; pp 217-221.
  • Kolbe, B.; Menzel, J.; Grob, M. Acid Gas Removal; Hydrocarbon Engr. 2000, 71-74.
  • Grob, M.; Menzel, J.; Tondorf, O. Acid Gas Removal from Natural and Synthesis Gas; Hydrocarbon Engr. 1998, 30-34.
  • Kowalsky, G. Kwoen Gas Plant: The Sour Gas Upgrader. Presented at the GTI Natural Gas Technologies Conference, Orlando, FL, 2002.
  • Hendriks, C. Carbon Dioxide Removal from Coal-Fired Power Plants; Kluwer Academic Publishers: Norwell, MA, 1994.
  • Gupta, H.; Fan, L.S. Carbonation-Calcination Cycle Using High-Reactivity Calcium Oxide for Carbon Dioxide Separation from Flue Gas; Ind. Eng. Chem. Res. 2002, 41, 4035-4042.
  • Gupta, H.; Iyer, M.; Sakadjian, B.; Fan, L.S. Separation of CO2 from Flue Gas by High Reactivity Calcium Based Sorbents. Presented at the 19th Annual International Pittsburgh Coal Conference, Pittsburgh, PA, 2002; Paper 39-3.
  • Hoffman, J.S.; Pennline, H.W. Investigation of CO2 Capture Using Regenerable Sorbents. Presented at the 17th Annual International Pittsburgh Coal Conference, Pittsburgh, PA, 2000; Paper 12-1.
  • Green, D.A.; Turk, B.S.; Gupta, R.P.; Portzer, J.W.; McMichael, W.J.; Harrison, D.P. Capture of Carbon Dioxide from Flue Gas Using Solid Regenerable Sorbents. Presented at the 19th Annual International Pittsburgh Coal Conference, Pittsburgh, PA, 2002; Paper 39-4.
  • Hayashi, H.; Taniuchi, J.; Furuyashiki, N.; Sugiyama, S.; Hirano, S.; Shigemoto, N.; Nonaka, T. Efficient Recovery of Carbon Dioxide from Flue Gases of Coal-Fired Power Plants by Cyclic Fixed-Bed Operations over K2 CO3 -on-Carbon; Ind. Eng. Chem. Res. 1998, 37, 185-191.
  • Hayashi, H.; Hirano, S.; Shigemoto, N.; Yamada, S. Characterization of Potassium Carbonate Supported on Porous Materials and Application for the Recovery of Carbon Dioxide from Flue Gases Under Moist Conditions; Nippon Kagaku Kaishi 1995, 1006-1012.
  • Hirano, S.; Shigemoto, N.; Yamada, S.; Hayashi, H. Cyclic Fixed-Bed Operations over K2 CO3 -on-Carbon for the Recovery of Carbon Dioxide under Moist Conditions; Bull. Chem. Soc. Jpn. 1995, 68, 1030-1035.
  • Onischak, J.; Baker, B. Development of a Prototype Regenerable Carbon Dioxide Absorber for Portable Life Support Systems; J. Eng. Ind. 1978, 100 (3), 383-385.
  • Otsuji, K.; Hirao, M.; Satoh, S. A Regenerable Carbon Dioxide Removal and Oxygen Recovery System for the Japanese Experiment Module; Acta Astronaut. 1987, 15 (1), 45-54.
  • Martin, R. Regenerable Sorbents and Portable Life Support; NASA Spec. Publ. 1969, NASA SP-234, 379-389.
  • Remus, G.; Nuccio, P.; Honegger, R. Carbon Dioxide Removal System of the Regenerable Solid Adsorbent Type; U.S. Govt. Res. Develop. Rep. 1969, 69 (18), 39.
  • Trusch, R. Carbon Dioxide Control in Spacecraft by Regenerable Solid Adsorbents; Space Congr., 4th 1967, 1–31–1-56.
  • Nalette, T.; Bibara, P.; Aylward, J. Preparation of High Capacity Unsupported Regenerable CO2 Sorbent; U.S. Patent No. 5,079,209, 1992.
  • Bibara, P.; Filburn, T.; Nalette, T. Regenerable Solid Amine Sorbent; U.S. Patent No. 5,876,488, 1999.
  • Soong, Y.; Gray, M.L.; Siriwardane, R.V.; Champagne, K.J.; Chuang, .S.C. Novel Amine Enriched Solid Sorbents for Carbon Dioxide Capture. Presented at the 1st National Conference on Carbon Sequestration, Washington, DC, 2001; Paper 7b.2.
  • Contarini, S.; Barbini, M.; Del Piero, G.; Gambarotta, E.; Mazzamurro, G.; Riocci, M.; Zappelli, P. Solid Sorbents for the Reversible Capture of Carbon Dioxide. Presented at GHGT-6, Kyoto, 2002; Poster Paper I4-1.
  • Xu, X.; Song, C.; Andresen, J.M.; Miller, B.G.; Scaroni, A.W. Adsorption Separation of CO2 from Simulated Flue Gas by Novel Meso-porous “Molecular Basket” Adsorbent. Presented at the 19th Annual International Coal Conference, Pittsburgh, PA, September 2002; Paper 39-2.
  • Curran, G.P.; Fink, C.E.; Gorin, E. CO2 Acceptor Gasification Process: Studies of Acceptor Properties, Advances in Chemistry. In Fuel Gasification, 69th ed.; Schorda, F.C., Ed.; American Chemical Society: Washington, DC, 1967; pp 141-165.
  • Elliott, M.A. Chemistry of Coal Utilization, Second Supplementary Volume; Elliot, M.A., Ed.; Wiley & Sons: New York, 1981; pp 1642-1648.
  • Han, C.; Harrison, D.P. Multicycle Performance of a Single-Step Process for H2 Production; Sep. Sci. Technol. 1997, 32, 681-697.
  • Siliban, A.; Narcida, M.; Harrison, D.P. Characteristics of the Reversible Reaction between CO2(g) and Calcined Dolomite; Chem. Eng. Comm. 1996, 4, 149-162.
  • Siliban, A.; Harrison, D.P. High-Temperature Capture of CO2 : Characteristics of the Reversible Reaction Between CaO(s) and CO2 (g); Chem. Eng. Comm. 1995, 137, 177-190.
  • Hoffman, J.S.; Fauth, D.J.; Pennline, H.W. Development of Novel Dry Regenerable Sorbents for CO2 Capture. Presented at the 19th Annual International Pittsburgh Coal Conference, Pittsburgh, PA, 2002, Paper 39-1.
  • Hoffman, J.S.; Pennline, H.W. Study of Regenerable Sorbents for CO2 Capture. Presented at the 1st National Conference on Carbon Sequestration, Washington, DC, 2001; Paper 3b.2.
  • Gupta, H.; Iyer, M.; Sakadjian, B.; Fan, L.S. CO2 Separation from Flue Gas by the Carbonation and Calcination of Metal Oxides; Report Number C2.11; Ohio Department of Development, Ohio Coal Development Office, Coal Research Consortium: Columbus, OH, 2001. Available at: http://www.ohiocoal.org/projects/Year2/C2.11.pdf.
  • Gupta, H.; Fan, L.S. Separation of CO2 from Flue Gas by High Reactivity Calcium Based Sorbents. Presented at the AIChE Annual Meeting, Reno, NV, Nov. 4–9, 2001; Poster 28w.
  • Fan, L.S.; Agnihotri, R.; Mahuli, S.K. Suspension Carbonation Process for Reactivation of Partially Utilized Sorbent; U.S. Patent No. 6,309,996, 2001.
  • Fan, L.S.; Ghosh-Dastidar, A.; Mahuli, S. Calcium Carbonate Sorbent and Methods of Making and Using Same; U.S. Patent No. 5,779,464, 1998.
  • Sasaoka, E.; Uddin, A.; Nojima, S. Novel Preparation Method of Macroporous Lime from Limestone for High-Temperature Desulfurization; Ind. Eng. Chem. Res. 1997, 36, 3639-3646.
  • Wu, S.; Sumie, N.; Su, C.; Sasaoka, E.; Uddin, A. Preparation of Macroporous Lime from Natural Lime by Swelling Method with Water and Acetic Acid Mixture for Removal of Sulfur Dioxide at High-Temperature; Ind. Eng. Chem. Res. 2002, 41, 1352-1356.
  • Wu, S.; Uddin, A.; Su, C.; Nagamine, S.; Sasaoka, E. Effect of the Pore-Size Distribution of Lime on the Reactivity for the Removal of SO2 in the Presence of High-Concentration CO2 at High Temperature; Ind. Eng. Chem. Res. 2002, 41, 5455-5458.
  • Johnson, A.A. Zero Emission Coal: Competitive, Highly Efficient Electricity Production from Even High Sulfur Coals. Energeia 2002, 13 (5), 1-3.
  • Ziock, H.J.; Brosha, E.L.; Garzon, F.H.; Guthrie, G.D.; Mukundan, R.; Robison, T.W.; Roop, B.; Smith, B.F.; Johnson, A.A.; Lackner, K.S.; et al. Presented at the 19th Annual International Pittsburgh Coal Conference, Pittsburgh, PA, 2002; Paper 25-2.
  • Ziock, H.J.; Lackner, K.S.; Harrison, D.P. Zero Emission Coal Power, a New Concept. Presented at the 1st National Conference on Carbon Sequestration, Washington, DC, 2001; Paper 2b.2.
  • Nakagawa, K.; Ohashi; T. A Novel Method of CO2 Capture from High-Temperature Gases. J. Electrochem. Soc. 1998, 145 (4), 1344-1345.
  • Nakagawa, K.; Ohashi, T. High Temperature CO2 Absorption Using Lithium Zirconate Powder. Presented at the 193rd Meeting of The Electrochemical Society, San Diego, 1998; Abstract No. 1073.
  • Ohashi, T.; Nakagawa, K.; Kato, M.; Yoshikawa, S.; Essaki, K. High-Temperature CO2 Removal Technique Using Novel Solid Chemical Absorbent. Presented at the 5th International Conference on Greenhouse Gas Control Technologies, Cairns, Australia, 2000.
  • Ohashi, T.; Nakagawa, K. Effect of Potassium Carbonate Additive on CO2 Absorption in Lithium Zirconate Powder; Mat. Res. Soc. Symp. Proc 1999, 547, 249-254.
  • Essaki, K.; Nakagawa, K.; Kato, M. Acceleration Effect of Ternary Carbonate on CO2 Absorption Rate in Lithium Zirconate Powder; J. Ceramic Soc. Japan 2001, 109 (10), 829-833.
  • Lin, J.Y.S. Novel Inorganic Materials for High Temperature Carbon Dioxide Separation. Year II. Membrane Synthesis and Sorbent Improvement; Subcontract No. OCRC3–00-1. C1.8, Project Report C2.8; Ohio Department of Development, Ohio Coal Development Office, Coal Research Consortium: Columbus, OH, 2002. Available at: http://www.ohiocoal.org/projects/Year2/C2.8.pdf.
  • Kato, M.; Yoshikawa, S.; Nakagawa, K. Carbon Dioxide Absorption by Lithium Orthosilicate in a Wide Range of Temperature and Carbon Dioxide Concentrations; J. Materials Sci. Lett. 2002, 21, 485-487.
  • Kato, M.; Nakagawa, K. New Series of Lithium Containing Complex Oxides, Lithium Silicates, for Application as a High-Temperature CO2 Absorbent; J. Ceramic Soc. Japan 2001, 109 (11), 911-914.
  • Hoffman, J.S.; Pennline, H.W. Letter to Toshiba, Inc., October 2002.
  • Knight, R.A.; Feldkirchner, H.L.; Carty, R.H.; Babu, S.P. A Process to Produce Medium-Btu Gas from Coal; Conference Paper CONF-900391–4, Ref No. DE90007584; Presented at the AIChE Spring Meeting, Orlando, FL, March, 1990, American Institute of Chemical Engineers: New York, 1990.
  • Sincar, S.; Golden, T.C. Purification of Hydrogen by Pressure Swing Adsorption; Sep. Sci. Technol. 2000, 35, 667-687.
  • Reddy, S. Hydrogen and Carbon Dioxide Coproduction; U.S. Patent Application No. 20020073845, 2002.
  • Siriwardane, R.V.; Shen, M.S.; Fisher, E.P.; Poston, J.A. Adsorption of CO2 on Molecular Sieves and Activated Carbon; Energy Fuels 2001, 15 (2), 279-284.
  • Siriwardane, R.V.; Shen, M.S.; Fisher, E.P.; Poston, J.A.; Shamsi, A. Adsorption and Desorption of CO2 on Solid Sorbents. Presented at the 1st Nationa Conference on Carbon Sequestration, Washington, DC, 2001; Paper 3b.3.
  • Ko, D.; Siriwardane, R.; Biegler, L.T. Optimization of a Pressure-Swing Adsorption Process Using Zeolite 13X for CO2 Sequestration. Presented at the American Institue of Chemical Engineers Annual Meeting, New York, November 2002; Paper 121d. Available at: http://www.netl.doe.gov/products/r&d/techpaper/2002–682.pdf.
  • Siriwardane, R.V.; Shen, M.S.; Fisher, E.P. Adsorption of CO2 , N2 , and O2 on Natural Zeolites; Energy Fuels 2003, in press.
  • Judkins, R.R.; Armstrong, T.R. An Overview of Technologies for Separating and Concentrating CO2 from Mixed Gas Streams. Presented at the 19th Annual International Pittsburgh Coal Conference, Pittsburgh, PA, 2002; Paper 43-1. Available at: http://www.netl.doe.gov/publications/proceedings/01/carbon_seq/3b1.pdf.
  • Judkins, R.R.; Burchell, T.D. CO2 Removal from Gas Streams Using a Carbon Fiber Composite Molecular Sieve. Presented at the 1st National Conference on Carbon Sequestration, Washington, DC, 2001; Paper 3b.1.
  • Sarkar, S.C.; Bose, A. Role of Activated Carbon Pellets in Carbon Dioxide Removal; Energy Convers. Mgmt. 1997, 38 (18), S105–S110.
  • Chue, K.T.; Kim, J.N.; Yoo, Y.J.; Cho, S.H.; Yang, R.T. Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery from Flue Gas by Pressure Swing Adsorption; Ind. Eng. Chem. Res. 1995, 34, 591-598.
  • Kikkinides, E.S.; Yang, R.T.; Cho, S.H. Concentration and Recovery of CO2 from Flue Gas by Pressure Swing Adsorption; Ind. Eng. Chem. Res. 1993, 32, 2714-2720.
  • Park, J.H.; Beum, H.T.; Kim, J.N.; Cho, S.H. Numerical Analysis of the Power Consumption of the PSA Process for Recovering CO2 from Flue Gas; Ind. Eng. Chem. Res. 2002, 41, 4122-4131.
  • Na, B.K.; Koo, K.K.; Eum, H.M.; Lee, H.; Song, H.K. CO2 Recovery from Flue Gas by PSA Process Using Activated Carbon; Korean J. Chem. Eng. 2001, 18, 220-227.
  • Gomes, V.G.; Yee, K.W.K. Pressure Swing Adsorption for Carbon Dioxide Sequestration from Exhaust Gases; Separation Purification Technol. 2002, 28, 161-171.
  • Yamano, M.; Aono, T.; Kurimoto, M.; Uno, M. Process for Separation of High-Purity Gas from Mixed Gas; International Patent No. WO87/01611, 1987.
  • Takamura, Y.; Narita, S.; Aoki, J.; Uchida, S. Application of High-Pressure Swing Adsorption Process for Improvement of CO2 Recovery System from Flue Gas; Can. J. Chem. Eng. 2001, 79, 812-816.
  • Ito, S.; Makino, H.; Eliasson, B.; Riemer, P.; Wokaun, A. Carbon Dioxide Separation from Coal Gas by Physical Adsorption at Warm Temperature. In Proceedings of the 4th International Conference on Greenhouse Gas Control Technologies, Interlaken, Switzerland, 1998; Elsevier: Oxford, UK, 1999; pp 131-136.
  • Gazzi, L.; Rescalli, C. Cryogenic Process for the Removal of Acidic Gases from Mixtures of Gases by Using Solvents; European Patent Application No. 86200865.3, 1986.
  • Spencer, D.F.; Tam, S.S.; Deppe, G.; Currier, R.F.; Young, J.S.; Anderson, G.K. Carbon Dioxide Separation from a High Pressure Shifted Synthesis Gas. Presented at the 19th Annual International Pittsburgh Coal Conference, Pittsburgh, PA, 2002; Paper 37-3.
  • Spencer, D.F.; Tam, S.S. An Engineering and Economic Evaluation of a CO2 Hydrate Separation System for Shifted Synthesis Gas. Presented at the 16th Annual International Pittsburgh Coal Conference, Pittsburgh, PA, 1999; Paper 7-3.
  • Spencer, D.F.; Eliasson, B.; Riemer, P.; Wokaun, A. Integration of an Advanced CO2 Separation Process with Methods for Disposing of CO2 in Oceans and Terrestrial Deep Aquifers. In Proceedings of the 4th International Conference on Greenhouse Gas Control Technologies, Inter-laken, Switzerland, 1998; Elsevier: Oxford, UK, 1999; pp 89-94.
  • Tam, S.S.; Stanton, M.E.; Ghose, S.; Deepe, G.; Spencer, D.F.; Currier, R.P.; Young, J.S.; Anderson, G.K.; Le, L.A.; Devlin, D.J. A High Pressure Carbon Dioxide Separation Process for IGCC Plants. Presented at the 1st National Conference on Carbon Sequestration, Washington, DC, 2001; Paper 1b.4.
  • Pennline, H.W.; Hoffman, J.S. Carbon Dioxide Capture Process with Regenerable Sorbents. U.S. Patent 6,387,337, 2002.
  • Ciora, R.J., Jr.; Liu, R.K. Development of CO2 Affinity Inorganic Membrane Suitable for CO2 Sequestration Applications. Presented at the 19th Annual International Pittsburgh Coal Conference, Pittsburgh, PA, 2002; Paper 45-2.
  • Noble, R.D.; Falconer, J.L. CO2 Separations Using Zeolite Membranes. Presented at the University Coal Research Contractors Review Meeting, Pittsburgh, PA, June 6–7, 2001.
  • Shih, W.-H.M.R. Development of (Barium-Doped Alumina) Meso-porous Membrane for CO2 Separation. Presented at the University Coal Research Contractors Review Meeting, Pittsburgh, PA, June 6–7, 2001.
  • Andrews, R. Separation of CO2 from Flue Gases by Carbon-Multiwall Carbon Nanotube Membranes. Presented at the University Coal Research Contractors Review Meeting, Pittsburgh, PA, June 6–7, 2001.
  • Shekhawat, D.; Luebke, D.R.; Pennline, H.W. A Review of Carbon Dioxide Selective Membranes; Draft U.S. Dept of Energy, Topical Report; 2003.
  • Schell, W.J.; Houston, C.D. Separation of CO2 from Mixtures by Membrane Permeation. Presented at the 61st Gas Conditioning Conference, 1983.
  • Goddin, C.S. Comparison of Processes for Treating Gases with High CO2 Content. Presented at the 61st Gas Conditioning Conference, 1983.
  • Perry, E.S. Progress in Separation and Purification; Wiley Interscience: New York, 1968; Vol. 1.
  • Huckins, H.E.; Kammermeyer, K. Correction to the Separation of Gases by Means of Porous Membranes; Chem. Eng. Prog. 1953, 49 (10), 517.
  • Huckins, H.E.; Kammermeyer, K. The Separation of Gases by Means of Porous Membranes Part II; Chem. Eng. Prog. 1953, 49 (6), 294-298.
  • Huckins, H.E.; Kammermeyer, K. The Separation of Gases by Means of Porous Membranes Part I; Chem. Eng. Prog. 1953, 49 (4), 180-184.
  • Weller, S.; Steiner, W.A. J. Appl. Physics 1950, 21 (4), 279.
  • Russell, F.G.; Coady, A.B. Gas-Permeation Process Economically Recovers CO2 from Heavily Concentrated Streams; Oil Gas J. 1982, June 28, 128-134.
  • Schell, W.J.; Houston, C.D. Process Gas with Selective Membranes; Hydrocarbon Process. 1982, 61 (9), 249-252.
  • Hogsett, J.E.; Mazur, W.H. Estimate Membrane Surface Area; Hydro-carbon Process. 1983, 62 (8), 52-54.
  • Cheng, S.I. U.S. Patent No. 4,353,713, 1982.
  • Granite, E.J. A Pilot Plant Design for the Integrated Gasification Process; MS Thesis Chemical Engineering, The Cooper Union: New York, 1989.
  • Buxbaum, R.E.; Kinney, A.B. Hydrogen Transport through Tubular Membranes; Ind. Eng. Chem. Res. 1996, 35, 530-537.
  • Pauling, L. General Chemistry; Dover Publications: New York, 1970.
  • Govind, R.; Atnoor, D. Development of a Composite Palladium Membrane for Selective Hydrogen Separation at High Temperature; Ind. Eng. Chem. Res. 1991, 35, 591-594.
  • Morreale, B.D.; Ciocco, M.V.; Enick, R.M.; Morsi, B.I.; Howard, B.H.; Cugini, A.V.; Rothenberger, K.S. The Permeability of Hydrogen in Bulk Palladium at Elevated Temperatures and Pressures; J. Membrane Sci. 2003, 212, 87-97.
  • Ciocco, M.V.; Morreale, B.D.; Rothenberger, K.S.; Howard, B.H.; Cugini, A.V.; Killmeyer, R.P.; Enick, R.M. High-Pressure, High-Temperature Hydrogen Permeability Measurements of Supported Thin-Film Palladium Membranes. Presented at the 19th Annual International Pittsburgh Coal Conference, Pittsburgh, PA, 2002; Paper 49-3.
  • Damle, A.S. Separation of Hydrogen and Carbon Dioxide in Advanced Fossil Energy Conversion Processes Using a Membrane Reactor. Presented at the 19th Annual International Pittsburgh Coal Conference, Pittsburgh, PA, 2002; Paper 49-2.
  • Way, J.D.; McCormic, R.L.; Roa, F. Palladium/Copper Alloy Composite Membranes for High-Temperature Hydrogen Separation from Coal-Derived Gas Streams. Presented at the University Coal Research Contractors Review Meeting, Pittsburgh, PA, June 6–7, 2001.
  • Dorris, S.E.; Lee, T.H.; Wang, S.; Picciolo, J.J.; Dusek, J.T.; Balachandran, U.; Rothenberger, K.S. Dense Cermet Membranes for Hydrogen Separation. Presented at the 19th Annual International Pittsburgh Coal Conference, Pittsburgh, PA, 2002; Paper 49-1.
  • Roark, S.E.; Mackay, R.; Sammells, A.F. Catalytic Membrane Reactors for Hydrogen Separation in Hydrocarbon Feedstreams. Presented at the 19th Annual International Pittsburgh Coal Conference, Pittsburgh, PA, 2002; Paper 43-2.
  • Gade, S.; Schaller, R.; Berland, B.; Schwartz, M. Novel Composite Membranes for Hydrogen Separation in Gasification in Vision 21 Plants. Presented at the 19th Annual International Pittsburgh Coal Conference, Pittsburgh, PA, 2002; Paper 43-3.
  • Pennline, H.; Hoffman, J.; Gray, M.; Siriwandane, R.; Granite, E. Recent Advances in Carbon Dioxide Capture and Separation Techniques at the National Energy Technology Laboratory. Presented at AIChE National Meeting, Reno, NV, November 2001; Paper 28g.
  • Sugiura, K.; Yanagida, M.; Tanimoto, K.; Kojima, T. The Removal Characteristics of Carbon Dioxide in Molten Carbonate for the Thermal Power Plant. In Proceedings of GHGT-5, Cairns, Australia, 2000.
  • Sugiura, K.; Takei, K.; Tanimoto, K.; Kojima, T. The Carbon Dioxide Concentrator by Using MCFC. Presented at the 8th Grove Fuel Cell Symposium, London, UK, 2003.
  • Amorelli, A.; Wilkinson, M.B.; Bedont, P.; Capobiance, P.; Marcenaro, B.; Parodi, F.; Torazza, A. An Experimental Investigation into the Use of Molten Carbonate Fuel Cells to Capture CO2 from Gas Turbine Exhaust Gases. Presented at GHGT-6, Kyoto, 2002; Paper F3-4.
  • Itou, K.; Tani, H.; Ono, Y.; Kasai, H.; Ota, K.-I. High Efficiency CO2 Separation and Concentration System by Using Molten Carbonate. Presented at GHGT-6, Kyoto, 2002; Paper F3-5.
  • Winnick, J. Electrochemical Membrane Gas Separation; Chem. Eng.Prog. 1990, 1990, 41-46.
  • Weaver, J.L.; Winnick, J. The Molten Carbonate Carbon Dioxide Concentrator: Cathode Performance at High CO2 Uitilization. J. Electrochem. Soc. 1983, 130 (1), 20-28.
  • Winnick, J.; Toghiani H.; Quattrone, P. Carbon Dioxide Concentration for Manned Spacecraft Using a Molten Carbonate Electrochemical Cell; AIChE J. 1982, 28 (1), 103-111.
  • Granite, E.; Kazonich, G.; Pennline, H. Electrochemical Devices for Separating and Detecting Carbon Dioxide. Presented at the 19th Annual International Pittsburgh Coal Conference, Pittsburgh, PA, 2002; Paper 45-3.
  • Granite, E.; Kazonich, G.; Pennline, H. Electrochemical Devices for Separating and Detecting Carbon Dioxide. Presented at the DOE Carbon Sequestration Program Review Meeting, Pittburgh, PA, February 2002.
  • Granite, E.J. Solid Electrolyte Aided Studies of Oxide Catalyzed Oxidation of Hydrocarbons; Ph.D. Thesis Chemical Engineering, University of Rochester, Rochester, NY, 1994.
  • Granite, E.J.; Jorne, J.A. Novel Method for Studying Electrochemically Induced “Cold Fusion” Using a Deuteron-Conducting Solid Electrolyte; J. Electroanal. Chem. 1991, 317, 285-290.
  • Granite, E.J. Electrochemical Pumps for the Separation of Hydrogen; NETL Project Proposal; U.S. Department of Energy: Pittsburgh, PA, 1999.
  • Soong, S.-J.; Wachsman, E.D.; Dorris, S.E.; Balachandran, U. Defect Chemistry Modeling of High-Temperature Proton-Conducting Cerates; Solid State Ionics 2002, 149, 1-10.
  • Guan, J.; Dorris, S.E.; Balachandran, U.; Liu, M. Transport Properties of SrCe0.95Y0.05O3-y and Its Application for Hydrogen Separation; Solid State Ionics 1998, 110, 303-310.
  • Balachandran, U.; Ma, B.; Maiya, P.S.; Mieville, R.L.; Dusek, J.T.; Picciolo, J.; Guan, J.; Dorris, S.E.; Liu, M. Development of Mixed-Conducting Oxides for Gas Separation; Solid State Ionics 1998, 108, 363-370.
  • Crenshaw, M. Letter to Evan J. Granite, 2000.
  • Crenshaw, M.; Chapman, T.; Granite, E.; Kazonich, G. Sequestration of CO2 Via a Molluscan Bio-Mimetic Pathway. Presented at the Carbon Sequestration Merit Review Meeting, National Energy Technology Center, Pittsburgh, PA, 2000.
  • Lehninger, A.L. Biochemistry; Worth Publishers: New York, 1975.
  • Matthews, B.J.H. The Rate of Air-Sea CO2 Exchange: Chemical Enhancement and Catalysis by Marine Microalgae; Ph.D. Thesis, University of East Anglia, Norwich, UK, 1999.
  • Bond, G.M.; Stringer, J.; Brandvold, D.K.; Simsek, F.A.; Medina, M.-G.; Egeland, G. Development of Integrated System for Biomimetic CO2 Sequestration Using the Enzyme Carbon Anhydrase; Energy Fuels 2001, 15, 309-316.
  • Bond, G. M.; Medina, M.-G.; Stringer, J.; Simsek-Ege, F.A. CO2 Capture from Coal-Fired Utility Generation Plant Exhausts, and Sequestration by Biomimetic Route Based on Enzymatic Catalysis—Current Status. Presented at the 1st National Conference on Carbon Sequestration, Washington, DC, 2001; Paper 5a.5.
  • Bond, G.M.; Stringer, J.; Brandvold, D.K.; Medina, M.-G.; Simsek, F.A.; Egeland, G. Development of Integrated Systems for Biomimetic CO2 Sequestration Using the Enzyme Carbonic Anhydrase; Prepr. ACS Div. Fuel Chem. 2000, 45 (4), 713.
  • Bond, G.M.; Egeland, G.; Grandvold, D.K.; Medina, M.-G.; Stringer, J.J. Enzymatic Catalysis And CO2 Sequestration, World Resource Review ed.; 1999; Chapter 11(4), pp 603-619.
  • Ichikawa, K.; Nakata, K.; Ibrahim, M.M.; Kawabata, S. Biochemical CO2 Fixation by Mimicking Zinc (II) Complex for Active Site of Carbonic Anhydrase. In Advances in Chemical Conversions for Mitigating Carbon Dioxide; Inui T., Anpo, M., Izui, K., Yanagida, S., Yamaguchi, T., Eds.; Elsevier: New York, 1998.
  • Hirano, S.; Yamamoto, K.; Inue, H.; Draget, K.I.; Varum, K.M.; Smidsrod, O. Chitosan-Calcium Carbonate Composite: Biomimetic Mineralization of Aqueous Carbonate Ions into Chitosan-Calcium Alginate Hydrogels. In Advances in Chemical Conversions for Mitigating Carbon Dioxide; Enui, T., Anpo, M., Yanagida, S., Yamaguchi, T., Eds.; Elsevier: New York, 1998.
  • Yokota, A. Super-RuBisCO: Improvement of Photosynthetic Performances of Plants. In Advances in Chemical Conversions for Mitigating Carbon Dioxide, Inui, T.; Anpo, M.; Izui, K.; Yanagida, S.; Yamaguchi, T., Eds.; Elsevier: New York, 1998.
  • Fujii, T.; Sadaie, M.; Saijou, M.; Nagano, T.; Suzuki, T.; Ohtani, M.; Shinoyama, H. Physiological Properties of Phosphoenolpyruvate Carboxylase and Phosphoenolpyruvate Carboxykinase from Rhodopseudomonas sp. No. 7. In Advances in Chemical Conversions for Mitigating Carbon Dioxide; Inui, T., Anpo, M., Izui, K., Yanagida, S., Yamaguchi, T., Eds.; Elsevier: New York, 1998.
  • Murakami, M.; Yamaguchi, N.; Nashide, T.; Muranaka, T.; Takimoto, Y. Overexpressed Effect of Carbonic Anhydrase on CO2 Fixation in Cyanobacterium, Synechococcus sp. PCC7942. In Advances in Chemical Conversions for Mitigating Carbon Dioxide; Inui, T., Anpo, M., Izui, K., Yanagida, S., Yamaguchi, T., Eds.; Elsevier: New York, 1998.
  • Ishii, M.; Yoon, K.-S.; Ueda, Y.; Ochiai, T.; Yun, N.; Takishita, S.; Kodama, T.; Igarashi, Y. Reductive TCA Cycle in an Aerobic Bacterium, Hydrogenobacterthermophilus Strain TK-6. In Advances in Chemical Conversions for Mitigating Carbon Dioxide; Inui, T., Anpo, M., Izui, K, Yanagida, S., Yamaguchi, T., Eds.; Elsevier: New York, 1998.
  • Tomizawa, K.-I.; Shikanai, T.; Shimoide, A.; Foyer, C. H.; Yokata, A. Revertant of No-Active RuBisCo Tobacco Mutant, Sp25, Obtained by Chloroplast Transformation Method Using Microprojectile Bombardment. In Advances in Chemical Conversions for Mitigating Carbon Dioxide; Inui, T., Anpo, M., Izui, K., Yanagida, S., Yamaguchi, T., Eds.; Elsevier: New York, 1998.
  • Nakamura, T.; Izui, K. Molecular Characterization of Recombinant Phosphoenolpyruvate Carboxylase from an Extreme Thermophile. In Advances in Chemical Conversions for Mitigating Carbon Dioxide; Inui, T., Anpo, M., Izui, K., Yanagida, S., Yamaguchi, T., Eds.; Elsevier: New York, 1998.
  • Matsumura, H.; Nagata, T.; Inoue, T.; Nagara, Y.; Yoshinaga, T.; Izui, K.; Kai, Y. Crystallization and Preliminary X-Ray Studies of Phosphoenolpyruvate Carboxylase from Escherichia Coli. In Advances in Chemical Conversions for Mitigating Carbon Dioxide; Inui, T., Anpo, M., Izui, K., Yanagida, S., Yamaguchi, T., Eds.; Elsevier: New York, 1998.
  • Mauser, H.; King, W.A.; Gready, J.E.; Andrews, T.J. CO2 Fixation by Rubisco: Computational Dissection of the Key Steps of Carboxylation, Hydration and C-C Bond Cleavage; J. Am. Chem. Soc. 2001, 123, 10821-10829.
  • Umeda, Y.; Hirano, A.; Hon-Nami, K.; Kunito, S.; Akiyama, H.; Onizuka, T.; Ikeuchi, M.; Inoue, Y. Conversion of CO2 into Cellulose by Gene Manipulation of Microalgae: Cloning of Cellulose Synthase Genes from Acetobacter xylinum. In Advances in Chemical Conversions for Mitigating Carbon Dioxide; Inui, T., Anpo, M., Izui, K., Yanagida, S., Yamaguchi, T., Eds.; Elsevier: New York, 1998.
  • Kurano, N.; Sasaki, T.; Miyachi, S. Carbon Dioxide and Microalgae. In Advances in Chemical Conversions for Mitigating Carbon Dioxide; Inui, T., Anpo, M., Izui, K., Yanagida, S., Yamaguchi, T., Eds.; Elsevier: New York, 1998.
  • Kawata, M.; Nanba, M.; Matsukawa, R.; Chihara, M.; Karube, I. Isolation and Characterization of a Green Alga Neochloris sp. for CO2 Fixation. In Advances in Chemical Conversions for Mitigating Carbon Dioxide; Inui, T., Anpo, M., Izui, K., Yanagida, S., Yamaguchi, T., Eds.; Elsevier: New York, 1998.
  • Hanagata, N.; Matsukawa, R.; Chihara, M.; Karube, I. Tolerance of a Green Alga, Scenedesmus komarekii, to Environmental Extremes. In Advances in Chemical Conversions for Mitigating Carbon Dioxide; Inui, T., Anpo, M., Izui, K., Yanagida, S., Yamaguchi, T., Eds.; Elsevier: New York, 1998.
  • Pedroni, P.; Davison, J.; Beckert, H.; Bergman, P.; Benemann, J.A. Proposal to Establish an International Network on Biofixation of CO2 and Greenhouse Gas Abatement with Microalgae; NETL J. Energy Env. Res. 2001, 1, 136-150.
  • Pedroni, P.; Davison, J.; Beckert, H.; Bergman, P.; Benemann, J. A Proposal to Establish an International Network on Biofixation of CO2 and Greenhouse Gas Abatement with Microalgae. Presented at the 1st National Conference on Carbon Sequestration, Washington, DC, 2001; Poster Paper 17.
  • Nakamura, T.; Senior, C.; Olaizola, M.; Cushman, M.; Masutani, S. Capture and Sequestration of CO2 from Stationary Combustion Systems by Photosynthesis of Microalgae. Presented at the 1st National Conference on Carbon Sequestration, Washington, DC, 2001; Poster Paper 15.
  • Yamada, K.; Suzuki, Y.; Casareto, B.E.; Komiyama, H. Possibility of High CO2 Fixation Rate by Coral Reef Ecosystems. Presented at GHGT-6, Kyoto, 2002; Paper D2-5.
  • Benemann, J.R. CO2 Mitigation with Microalgae Systems; Energy Convers. Mgmt. 1997, 38, S475–S479.
  • Usui, N.; Ikenouchi, M. The Biological CO2 Fixation and Utilization Project by RITE (1)-Highly Effective Photobioreactor System; Energy Convers. Mgmt. 1997, 38, S487–S492.
  • Hirata, S.; Hayashitani, M. Carbon Dioxide Fixation and Biomass Production with Blue-Green Algae Spirulina Platensis. In Advances in Chemical Conversions for Mitigating Carbon Dioxide; Inui, T., Anpo, M., Izui, K., Yanagida, S., Yamaguchi, T., Eds.; Elsevier: New York, 1998.
  • Pal, N. Microbial Sequestration of Carbon Dioxide and Subsequent Conversion to Methane. Presented at the 1st National Conference on Carbon Sequestration, Washington, DC, 2001; Poster Paper 13.
  • Sinha, V.R.P.; Fraley, L.; Chowdhry, B.S. Carbon Dioxide Utilization and Seaweed Production. Presented at the 1st National Conference on Carbon Sequestration, Washington, DC, 2001; Poster Paper 14.
  • Hon-Nami, K.; Hirano, A.; Kumito, S.; Tsuyuki, Y.; Kinoshita, T.; Ogushi, Y.A. New Marine Microalga Cultivation in a Tubular Bioreactor and Its Utilization as an Additive for Paper Surface Improvements; Energy Convers. Mgmt. 1997, 38, S481–S486.
  • Shishido, Y.; Kawata, M.; Matsukawa, R.; Chihara, M.; Karube, I. Screening of Polysaccharide-Producing Microalgae. In Advances in Chemical Conversions for Mitigating Carbon Dioxide; Inui, T., Anpo, M., Izui, K., Yanagida, S., Yamaguchi, T., Eds.; Elsevier: New York, 1998.
  • Matsukawa, R.; Wada, Y.; Tan, N.; Saiai, N.; Chihara, M.; Karube, I. Antioxidant Activity of CO2 Fixing Microalgae. In Advances in Chemical Conversions for Mitigating Carbon Dioxide; Inui, T., Anpo, M., Izui, K., Yanagida, S., Yamaguchi, T., Eds.; Elsevier: New York, 1998.
  • Samejima, Y.; Hirano, A.; Hon-Nami, K.; Kunito, S.; Masuda, K.; Hasuike, M.; Tsuyuki, Y.; Ogushi, Y. A Marine Microalga Utilization for a Paper: Semi-Batch Cultivation of Tetraselmis sp. Tt-1 by a Tubular Bioreactor and the Partial Substitution of Whole Kenaf Pulp for a Paper. In Advances in Chemical Conversions for Mitigating Carbon Dioxide; Inui, T., Anpo, M., Izui, K., Yanagida, S., Yamaguchi, T., Eds.; Elsevier: New York, 1998.
  • Yamagat, H.; Matoba, R.; Fujii, T.; Yukawa, H. Application of Photo-synthetic Bacteria for Porphyrin Production. In Advances in Chemical Conversions for Mitigating Carbon Dioxide; Inui, T., Anpo, M., Izui, K., Yanagida, S., Yamaguchi, T., Eds.; Elsevier: New York, 1998.
  • Otsuki, T.; Yamashita, M.; Hirotsu, T.; Kabeya, H.; Kitagawa, R. Utilization of Micro-Algae for Building Materials after CO2 Fixation. In Advances in Chemical Conversions for Mitigating Carbon Dioxide; Inui, T., Anpo, M., Izui, K., Yanagida, S., Yamaguchi, T., Eds.; Elsevier: New York, 1998.
  • Miyasaka, H.; Nakano, H.; Akiyama, H.; Kanai, S.; Hirano, M. Production of PHA (Polyhydroxylkanoate) by Genetically Engineered Marine Cyanobacterium. In Advances in Chemical Conversions for Mitigating Carbon Dioxide; Inui, T., Anpo, M., Izui, K., Yanagida, S., Yamaguchi, T., Eds.; Elsevier: New York, 1998.
  • Hayashi, T.; Ihara, Y.; Nakai, T.; Tominaga, R. Cellulose as a Biological Sink of CO2 . In Advances in Chemical Conversions for Mitigating Carbon Dioxide; Inui, T., Anpo, M., Izui, K., Yanagida, S., Yamaguchi, T., Eds.; Elsevier: New York, 1998.
  • Suh, I.S.; Park, C.B.; Han, J.-K.; Lee, S.B. Cultivation of Cyanobacterium in Various Types of Photobioreactors for Biological CO2 Fixation. In Advances in Chemical Conversions for Mitigating Carbon Dioxide; Inui, T., Anpo, M., Izui, K., Yanagida, S., Yamaguchi, T., Eds.; Elsevier: New York, 1998.
  • Watanabe, Y.; Morita, M.; Saiki, H. Photosynthetic CO2 Fixation Performance by a Helical Tubular Photobioreactor Incorporating Chlorella sp. under Outdoor Culture Conditions. In Advances in Chemical Conversions for Mitigating Carbon Dioxide; Inui, T., Anpo, M., Izui, K., Yanagida, S., Yamaguchi, T., Eds.; Elsevier: New York, 1998.
  • Bayless, D.J.; Kremer, G.G.; Prudich, M.E.; Stuart, B.J.; Vis-Chiasson, M.L.; Cooksey, K.; Muhs, J. Enhanced Practical Photosynthetic CO2 Mitigation. Presented at the 1st National Conference on Carbon Sequestration, Washington, DC, 2001; Paper 5a.4.
  • Ono, E.; Cuello, J.L. Design Parameters of Solar Concentrating Systems for CO2 -Mitigating Algal Photobioreactors. Presented at GHGT-6, Kyoto, 2002; Paper F2-5.
  • Watanabe, Y.; Saiki, H. Development of a Photobioreactor Incorporating Chlorella Sp. for Removal of CO2 in Stack Gas; Energy Convers. Mgmt. 1997, 38 (19), S499–S503.
  • Kadam, K.L. Power Plant Flue Gas as a Source for CO2 for Microalgae Cultivation: Economic Impact of Different Process Options; Energy Convers. Mgmt. 1997, 38 (19), S505–S510.
  • Kajiwara, S.; Yamada, H.; Ohkuni, N.; Ohtaguchi, K. Design of the Bioreactor for Carbon Dioxide Fixation by Syenchococcus PCC7942; Energy Convers. Mgmt. 1997, 38 (19), S529–S532.
  • Borodyanski, G.; Konstantinov, I. Microalgae Separator Apparatus and Method; U.S. Patent Application No. 20020079270, 2002.
  • Nakamura, T.; Olaizzola, M.; Masutani, S.M. Recovery and Sequestration of CO2 from Stationary Combustion Systems by Photosynthesis of Microalgae; Quarterly Report #4; National Energy Technology Laboratory: Pittsburgh, PA, 2002.
  • Bayless, D.J.; Vis-Chiasson, M.L.; Kremer, G.G. Enhanced Practical Photosynthetic CO2 Mitigation; U.S. Patent Application 20020072109, 2002.
  • Granite, E.J.; Pennline, H.W. Photochemical Removal of Mercury from Flue Gas; Ind. Eng. Chem. Res. 2002, 41, 5470-5476.
  • Kosugi, T.; Hayashi, A.; Matsumoto, T.; Akimoto, K.; Tokimatsu, K.; Yoshida, H.; Tomoda, T.; Kaya, Y. Evaluation of CO2 Capture Technologies Development by Use of Graphical Evaluation and Review Technique. Presented at GHGT-6, Kyoto, 2002; Paper B4-3.
  • Stahl, E.; Schilz, W.; Schutz, E.; Willing, E. A Quick Method for the Microanalytical Evaluation of the Dissolving Power of Supercritical Gases; Angew. Chem. Int. Ed. Engl. 1978; 17, 731-738.
  • Prutton, C.F.; Savage, R.L. The Solubility of Carbon Dioxide in Calcium Chloride-Water Solutions at 75, 100, 120° and High Pressures; J. Am. Chem. Soc. 1945, 67, 1550-1554.
  • Bethke, C.M. The Geochemist’s Workbench—A User’s Guide to Rxn, Act2, Tact, React, and Gtplot; 4.0 ed.; University of Illinois: Urbana, IL, 2002.
  • Wiebe, R.; Gaddy, V.L. The Solubility in Water of Carbon Dioxide at 50, 75 and 100o, at Pressures to 700 Atmospheres; J. American Chemical Soc. 1939, 61, 315-318.
  • Wiebe, R.; Gaddy, V.L. The Solubility of Carbon Dioxide in Water at Various Temperatures from 12 to 40o and at Pressures to 500 Atmospheres. Critical Phenomena; J. Am. Chem. Soc. 1940, 62, 815-817.
  • Enick, R.M.; Klara, S.M. CO2 Solubility in Water and Brine under Reservoir Conditions; Chem. Eng. Comm. 1990, 90, 23-33.
  • Enick, R.M.; Klara, S.M. Effects of CO2 Solubility in Brine on the Compositional Simulation of CO2 Floods; Reservoir Engr. 1992, 253-258.
  • Duan, Z.; Moller, N.; Weare, J.H. An Equation of State for the CH4- CO2 -H2 O System: I. Pure Systems from 0 to 1000 oC and 0 to 8000 Bar; Geochimica Cosmochim. Acta 1992, 56, 2605-2617.
  • White, C.M.; Smith, D.; Jones, K.; Goodman, A.; Jikich, S.; LaCount, R.; DuBose, S.; Ozdemir, E.; Morsi, B.; Schroeder, K.T. Storage of Carbon Dioxide in Coal with Concomitant Enhanced Coalbed Methane Recovery—A Review; to be submitted.
  • Gunter, W.D.; Gentiz, T.; Rottenfusser, B.A.; Richardson, R.J.H. Deep Coalbed Methane in Alberta, Canada: A Fuel Resource with the Potential of Zero Greenhouse Gas Emissions; Energy Convers. Mgmt. 1997, 38 (18), S217–S222.
  • Fulton, P.F.; Parente, C.A.; Rogers, B.A.; Shah, N.; Reznik, A.A. A Laboratory Investigation of Methane from Coal by Carbon Dioxide Injection; Soc. Petroleum Engr. J. 1980, 65.
  • Reznik, A.A.; Singh, P.K.; Foley, W.L. An Analysis of the Effect of CO2 Injection on the Recovery of In-Situ Methane from Bituminous Coal: An Experimental Simulation; Soc. Petroleum Engr. J. 1984, October, 521-528.
  • Arri, L.E.; Yee, D.; Morgan, W.D.; Jeansonne, M.W. Modeling Coalbed Methane Production with Binary Gas Sorption; SPE Paper 24363; SPE Rocky Mountain Regional Meeting, Casper, WY, 1992; pp 459-472.
  • Chaback, J.J.; Yee, D.; Volz, R.F., Jr.; Seidle, J.P.; Puri, R. Method for Treating a Mixture of Gaseous Fluids within a Solid Carbonaceous Subterranean Formation; Chicago, Ill. U.S. Patent 5,439,054, 1994; 1995.
  • Seidle, J.P.; Yee, D.; Puri, R. Method for Recovering Methane from Solid Carbonaceous Subterranean Formations; U.S. Patent 5,566,755, February 13, 1995; 1996.
  • Chaback, J.; Yee, D.; Volz, R.F.; Seidle, J.P.; Puri, R. Method for Recovering Methane from Solid Carbonaceous Subterranean Formations; U.S. Patent 5,566,756, August 7, 1995; 1996.
  • Lyle, D. Coalbed Methane Production Techniques Progress in Rocky Mountain Basins; Hart’s Oil Gas World 1994, July, 55-56.
  • Stevens, S.H.; Spector, D.; Riemer, P. Enhanced Coalbed Methane Recovery Using CO2 Injection: Worldwide Resource and CO2 Sequestration Potential. In Proceedings of the International Oil & Gas Conference and Exhibition, Beijing, China, November 2–6, 1998; SPE paper 48881; p 489.
  • Stevens, S.H.; Kuuskraa, V.A.; Spector, D.; Riemer, P. CO2 Sequestration in Deep Coal Seams: Pilot Results and Worldwide Potential. In Proceedings of the 4th International Conference on Greenhouse Gas Control Technologies, Interlaken, Switzerland, 1998; Elsevier: Oxford, UK, 1999; pp 175-180.
  • Reeves, S.R. Geological Sequestration of CO2 in Deep, Unmineable Coalbeds: An Integrated Research and Commercial-Scale Field Demonstration Project. Presented at the Annual Technical Conference and Exhibition, New Orleans, LA, Sept 30–Oct 3, 2001; SPE paper 71749.
  • Gale, J.; Freund, P. Coal Bed Methane Enhancement with CO2 Sequestration Worldwide Potential. In Proceedings of the 21st World Gas Conference, Nice, France, June 6–9, 2000.
  • Seidle, J.P.; Sigdestad, C.A.; Raterman, K.T.; Negahban, S. Characterization of Enhanced Coalbed Methane Recovery Injection Wells. In Proceedings of the Annual Technical Conference and Exhibition, San Antonio, TX, Oct 5–8, 1997; SPE paper 38861; pp 171-176.
  • Puri, R.; Yee, D. Enhanced Coalbed Methane Recovery. In Conference Proceeding: 65th SPE Annual Technical Conference and Exhibition, New Orleans, LA, Sept 23–26, 1990; pp 193-202.
  • Gunter, W. CO2 Sequestration in Deep “Unmineable” Coal Seams. In Conference Proceedings; CAPP/CERI Industry Best Practices Conference, 2000; pp 1-19.
  • Wong, S.; Gunter, B. Testing CO2 —Enhanced Coalbed Methane Recovery; Greenhouse Gas R&D 1995, 1-4.
  • Bradshaw, B.E.; Simon, G.; Bradshaw, J.; Mackie, V. GEODISC Research: Carbon Dioxide Sequestration Potential of Australia’s Coal Basins. In Proceedings of the 18th Annual International Pittsburgh Coal Conference, Newcastle, Australia, 2001; Pittsburgh Coal Conference: Pittsburgh, PA, 2001.
  • Wong, S.; MacLeod, K.; Wold, M.; Gunter, W.D.; Mavor, M.J.; Gale, J. CO2 Enhanced Coalbed Methane Recovery Demonstration Pilot—A Case for Australia. In Proceedings of the International Coalbed Methane Symposium, Tuscaloosa, AL, 2001; pp 75-86.
  • Pagnier, H.; Van Bergen, F. CO2 Storage in Coa: the RECOPOL Project. Presented at the First International Forum on Geologic Sequestration of CO2 in Deep, Unmineable Coalseams, “Coal-Seq I,” Houston, TX, March 14–15, 2002. Available at: http://www.coal-seq.com/Proceedings/FrankVanBergen-CO2 -Presentation.pdf.
  • Pagnier, H.; Van Bergen, F. Demonstrating CO2 -ECMB: The RECOPOL Project; International Energy Agency, Greenhouse Gas R&D Programme: 2002. Available at: http://www.ieagreen.org.uk/jan58.htm.
  • Pagnier, H.J.M.; Bergen, F.V.; Vate, L.V.D.; Hills, L.; Bamber, W. Inventory of the Potential of Combined Coalbed Methane Production Carbon Dioxide Disposal in the Dutch Subsurface XIV International Congress on the Carboniferous and Permian (ICCP): Programme with Abstracts; 14. International Congress on the Carboniferous and Permian, 1999; p 109.
  • Schreurs, H.C.E. Potential for CO2 —Sequestration and Enhanced Coalbed Methane Production in the Netherlands. In Proceedings of the 18th Annual International Pittsburgh Coal Conference, Newcastle, Australia, 2001; Pittsburgh Coal Conference: Pittsburgh, PA, 2001.
  • World Energy Outlook; International Energy Agency: Paris, 2000. Available at: http://www.worldenergyoutlook.org.
  • Deguchi, G. Japanese Current R&D Effort on Coal Seam Sequestration of CO2 . Presented at the First International Forum on Geologic Sequestration of CO2 in Deep, Unmineable Coalseams, “Coal- Seq I,” Houston, TX, March 14–15, 2002. Available at: http://www.coal-seq.com/Coal-Seq_I_Forum.htm.
  • Japan Coal Energy Center. JCOAL Topics #93: JCOAL Organized Japan Forum on CO2 Sequestration in Coal Seams; Japan Coal Energy Center: June 4, 2001. Available at: http://www.jcoal.or.jp/jcoal/en/e _topics.nsf/7f28de9c5d8dbd3649256986002d2f7f/575cabf276ef14074 9256a610032c140?OpenDocument.
  • Japan Coal Energy Center. Chinese Coal Project Gets Canadian Aide (April 9, 2002); Japan Coal Energy Center: April 9, 2002. Available at: http://www.jcoal.or.jp/jcoal/en/e_topics.nsf/7f28de9c5d8dbd364925 6986002d2f7f/7c3ac2f9e652ff2a49 256b96003da761?OpenDocument.
  • Reeves, S. Seminar at National Energy Technology Laboratory, 2001.
  • Hamelinck, C.N.; Faaij, A.P.; Ruijg, G.J.; Jansen, D.; Pagnier, H.J.M.; van Bergen, F.; Wolf, K.-H.A.A.; Barzandji, O.H.; Bruining, H.; Schreurs, H. Potential for CO2 Sequestration and Enhanced Coalbed Methane Production in the Netherlands; The Netherlands Agency for Energy and the Environment (NOVEM): Utrecht, The Netherlands, 2001. Available at: http://www.chem.uu.nl/nws/www/publica/e2001–07.pdf.
  • NOVEM Report Abstract Sequestration and Enhanced Coalbed Methane Potential for CO2 ; The Netherlands Agency for Energy and the Environment (NOVEM): Utrecht, The Netherlands, 2001.
  • Dressen, R.; van Tongeren, P.; Laenen, B.; Dusar, M.; Wolf, K.H.A. CO2 Storage/ECBM Production Scenarios for the Campine Basin (Belgium). Presented at the 5th International Conference on Greenhouse Gas Control Technologies, Cairns, Australia, 2000.
  • Kuuskraa, V.A.; Boyer, C.M., Jr.; Kelafant, J.A. Hunt for Quality Basins Goes Abroad; OGJ Special, Oil Gas J. 1992, Oct. 5, 49-54.
  • Gunter, W.D.; Wong, S.; Cheel, D.B.; Sjostrom, G. Large CO2 Sinks: Their Role in the Mitigation of Greenhouse Gases from an International, National (Canadian) and Provincial (Alberta) Perspective; Appl. Energy 1988, 61, 209-227.
  • Nye, B.; Reid, D.; Childers, R.D.; Miller, G.C.; Sanchez, E. Cost-Effective Recompletions of Fruitland Formation Coalbed Methane Gas Wells Are Achieved with PDC Technology-Based One-Trip Sidetracking and Lateral-Drilling Technique. Presented at the Rocky Mountain Petroleum Technology Conference, Keystone, CO, May 21–23, 2001; SPE paper 71052.
  • ICF Resources, Inc. The United States Coalbed Methane Resource; Quarterly Review of Methane from Coal Seams Technology 1990, 7 (March), 10-28.
  • Juntgen, H.; Karweil, J. Gasbildung Und Gasspeicherung in Steinkohleflözen; Erdöl und Erdgas Petrochemie 1966, 19 (5), 339-344.
  • Yee, D.; Seidle, J.P.; Hanson, W.P. Gas Sorption on Coal and Measurement of Gas Content. In Hydrocarbons from Coal; Law, B.E., Rice, D.D., Eds.; AAPG Studies in Geology 38; American Association of Petroleum Geologists: Tulsa, OK, 1993; pp 203-218.
  • Moffat, D.H.; Weale, K.E. Sorption by Coal of Methane at High Pressures; Fuel 1955, 54, 449-462.
  • Levine, J.R. Coalification: The Evolution of Coal as Source Rock and Reservoir Rock for Oil and Gas. In Hydrocarbons from Coal; Law, B.E., Rice, D.D., Eds.; AAPG Studies in Geology 38; American Association of Petroleum Geologists: Tulsa, OK, 1993; pp 39-77.
  • Bustin, R.M.; Clarkson, C.R. Geological Controls on Coalbed Methane Reservoir Capacity and Gas Content; Int. J. Coal Geol. 1998, 38 (1–2), 3-26.
  • Meissner, F.F. Cretaceous and Lower Tertiary Coals as Sources for Gas Accumulations in the Rocky Mountain Area. In Hydrocarbon Source Rocks of the Greater Rocky Mountain Region; Woodward, J., Meissner, F.F., Clayton, J.L., Eds.; Rocky Mountain Association of Geologists: Denver, CO, 1984; pp 401[hypyhen]431.
  • Wyman, R.E. Gas Resources in Elmworth Coal Seams; AAPG Memoir 1984, 38, 173-187.
  • Joubert, J.I.; Grein, C.T.; Bienstock, D. Effect of Moisture on the Methane Capacity of American Coals; Fuel 1974, 53 (July), 186-190.
  • Clarkson, C.R.; Bustin, R.M. Binary Gas Adsorption/Desorption Isotherms: Effect of Moisture and Coal Composition upon Component Selectivity. In Proceedings of the International Coalbed Methane Symposium, Tuscaloosa, AL, 1999; pp 91-115.
  • Levine, J.R. The Impact of Oil Formed during Coalification on Generation and Storage of Natural Gas. In Proceedings of the Coalbed Methane Symposium, 1991; pp 307-315.
  • White, C.M. An Initial Set of Working Hypotheses Concerning Some Chemical and Physical Events When CO2 Is Injected into a Coalbed; Fuel Chem. Division Preprints 2003, 48 (1), 114-116.
  • Larsen, J.W. Polymeric Nature of Coals: Some Consequences and Some Unknowns. In Proceedings: International Conference on Coal Science, San Francisco, CA, 2001; pp 1-18.
  • Larsen, J.W. Sorption of Carbon Dioxide by Coals; Fuel Chem. Division Preprints 2003, 48 (1), 112-113.
  • Wissinger, R.G.; Paulaitis, M.E. Swelling and Sorption in Polymer-CO2 Mixtures at Elevated Pressures; J. Polymer Science: Part B: Polymer Phys. 1987, 25, 2497-2510.
  • Lee, D.; Hutchison, J.C.; Leone, A.M.; DeSimone, J.M.; Murray, R.W. Electron and Mass Transport in Hybrid Redox Polyether Melts Contacted with Carbon Dioxide; J. Am. Chem. Soc. 2002, 124, 9310-9317.
  • Khan, M.R.; Jenkins, R.G. Thermoplastic Properties of Coal at Elevated Pressures: Effects of Gas Atmospheres. In Proceedings of Conference on Coal Science, Sydney, Australia, October 28, 1985; p 5.
  • Hsieh, S.T.; Duda, J.L. Probing Coal Structure with Organic Vapour Sorption; Fuel 1987, 66 (2), 170-178.
  • Reucroft, P.J.; Sethuraman, A.R. Effect of Pressure on Carbon Dioxide Induced Coal Swelling; Energy Fuels 1987, 1 (1), 72-75.
  • Giddings, J.C.; Myers, M.N.; King, J.W. Dense Gas Chromatography at Pressures to 2000 Atmospheres; J. Chromatogr. Sci. 1969, 7 (5), 276-283.
  • Dooley, K.M.; Launey, D.; Becnel, J.M.; Caines, T.L. Measurement and Modeling of Supercritical Fluid Extraction from Polymeric Matrices. In AC Symp. Series 608, American Chemical Society: Washington, DC, 1995; Chapter 18, pp 269-281.
  • Gash, B.W. Measurement of “Rock Properties” in Coal for Coalbed Methane Production. Presented at the 66th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Dallas, TX, October 6–9, 1991; SPE paper 22909, pp 221-230.
  • Gash, B.W.; et al. The Effects of Cleat Orientation and Confining Pressure and Cleat Porosity, Permeability, and Relative Permeability in Coal. In Proceedings of the SPWLA/SCA Symposium, Oklahoma City, OK, June 15–16, 1992.
  • Harpalani, S.; Chen, G. Influence of Gas Production Induced Volu-metric Strain on Permeability of Coal; Geotech. Geolog. Eng. 1997, 15, 303-325.
  • Rice, D.D.; Young, G.B.C.; Paul, G.W. Methodology for Assessment of Technically Recoverable Resources of Coalbed Gas. In 1995 National Assessment of United States Oil and Gas Resources—Results, Methodology, and Supporting Data; Gautier, D.L., Dolton, G.L., Takahashi, K.I., Varnes, K.L., Eds.; U.S. Geological Survey: Denver, CO, 1995.
  • Somerton, W.H.; Soylemezoglu, I.M.; Dudley, R.C. Effect of Stress on Permeability of Coal. Final Report; Aug 24, 1971–June 30, 1974.
  • Parkhurst, D.L.; Appelo, C.A.J. User’s Guide to PHREEQC (Version 2)—A Computer Program for Speciation, Batch-Reaction, One Dimensional Transport, and Inverse Geochemical Modeling; 99–4259; U.S. Geological Survey: Reston, VA, 1999.
  • Hayashi, J.; Hayashi, K.; Takeuchi, K.; Kusakabe, L. Removal of Calcium from Low Rank Coals by CO2 /Water Treatment; Fuel 1991; 70, 1181.
  • Iwai, Y.; Murozono, T.; Koujina, Y.; Arai, Y.; Sakaniahi, K. Physical Properties of Low Rank Coal Dried with Supercritical Carbon Dioxide; J. Supercritical Fluids 2000, 18, 73-79.
  • Gentzis, T. Subsurface Sequestration of Carbon Dioxide: An Overview from an Alberta (Canada) Perspective. Int. J. Coal Geol. 2000, 43 (1–4), 287-305.
  • Levine, J.R. Influences of Coal Composition on Coal Seam Reservoir Quality: A Review. In Symposium on Coalbed Methane Research and Development in Australia; Beamish, B.B., Gamson, P.D., Eds.; James Cook University: Townsville, Australia, Nov 1992; pp 1-17.
  • Stansfield, E.; Gilbart, K.C. Moisture Determination for Coal Classification; 1932; pp 125-143.
  • Rees, O.W.; Reed, F.H.; Land, G.W. A Study of the Equilibration Method of Determining Moisture in Coal for Classification by Rank; Report of Investigation #58; Illinois State Geological Survey: Champaign, IL, 1939.
  • Bachu, S. Sequestration of CO2 in Geological Media: Criteria and Approach for Site Selection in Response to Climate Change; Energy Convers. Mgmt. 2000, 41 (9), 953-970.
  • Gunter, W.D.; Chalaturnyk, R.J.; Scott, J.D.; Eliasson, B.; Riemer, P.; Wokaun, A. Monitoring of Aquifer Disposal of CO2 : Experience from Underground Gas Storage and Enhanced Oil Recovery; Greenhouse Gas Control Technol. 1999, 151-156.
  • Bruant, R.G.; Guswa, A.J.; Celia, M.A.; Peters, C.A. Safe Storage of CO2 in Deep Saline Aquifers; Environ. Sci. Technol. 2002, 36 (11), 240A–245A.
  • Holloway, S. An Overview of the Underground Disposal of Carbon Dioxide; Energy Convers. Mgmt. 1997, 38 (18), S193–S198.
  • Hitchon, B.; Gunter, W.D.; Gentzis, T.; Bailey, R.T. Sedimentary Basins and Greenhouse Gases: A Serendipitous Association; Energy Convers. Mgmt. 1999, 40, 825-843.
  • Bergman, P.D.; Winter, E.M. Disposal of Carbon Dioxide in Aquifers in the U.S.; Energy Convers. Mgmt. 1995, 36 (6–9), 523-526.
  • Gupta, N.; Sass, B.; Sminchak, J.; Naymik, T.; Bergman, P. Hydrodynamics of CO2 Disposal in a Deep Saline Formation in the Midwestern United States; Eliasson, B., Riemer, P., Wokaun, A., Eds.; Greenhouse Gas Control Technologies; Elsevier Science: New York, 1999; pp 157-162.
  • Hovorka, S.D.; Doughty, C.; Knox, P.R.; Green, C.T.; Pruess, K.; Benson, S.M. Evaluation of Brine-Bearing Sands of the Frio Formation, Upper Texas Gulf Coast for Geological Sequestration of CO2 ; National Energy Technology Laboratory: Pittsburgh, PA, 2001; pp 1-13. Available at: http://www.netl.doe.gov/publications/proceedings/01/carbon_seq/4a2%20.pdf.
  • Ondrey, G. Carbon Dioxide Gets Grounded; Chem. Eng. (N.Y.) 2000, 107 (3), 41-45.
  • Kongsjorden, H.; Karstad, O.; Torp, T.A. Saline Aquifer Storage of Carbon Dioxide in the Sleipner Project; Waste Management 1997, 17 (5/6), 303-308.
  • Doughty, C.; Pruess, K.; Benson, S.M.; Hovorka, S.D.; Knox, P.R.; Green, C.T. Capacity Investigation of Brine-Bearing Sands of the Frio Formation for Geologic Sequestration of CO2 ; National Energy Technology Laboratory: Pittsburgh, PA, 2001; pp 1-16. Available at: http://www.netl.doe.gov/publications/proceedings/01/carbon_seq/p32.pdf.
  • Hovorka, S.D.; Knox, P.R.; Holtz, M.H.; Fouad, K.; Sakurai, S.; Yeh, J.S. Field Experiment for CO2 Sequestration; Texas Bureau of Economic Geology: Austin, TX, 2002. Available at: http://www.beg.utexas.edu/environqlty/CO2 seq/fieldexperiment.htm.
  • Battelle Memorial Institute. AEP’s Mountaineer Plant to Be Site for Research Project on Climate Change Technology; Battelle News Release: Columbus, OH, 2002. Available at: http://www.battelle.org/news/02/11–21-02AEP.stm.
  • U.S. Department of Energy. A Climate Change Solution beneath Our Feet?; National Energy Technology Laboratory: Pittsburgh, PA, 2002. Available at: http://www.netl.doe.gov/publications/press/2002/tl_ sequestration_aep.html.
  • Sass, B.; Gupta, N.; Sminchak, J.; Bergman, P. Geochemical Modeling to Assess the Capacity of a Midwestern United States Geologic Formation for CO2 Sequestration; Eliasson, B., Riemer, P., Wokaun, A., Eds.; Greenhouse Gas Control Technologies; Elsevier Science: New York, 1999; pp 1079-1085.
  • Gunter, W.D.; Bachu, S.; Law, D.H.; Marwaha, V.; Drysdale, D.L.; Macdonald, D.E.; Mccann, T.J. Technical and Economic Feasibility of CO2 Disposal in Aquifers within the Alberta Sedimentary Basin, Canada; Energy Convers. Mgmt. 1996, 37 (6–8), 1135-1142.
  • Frimpong, S.; Hachiya, A. Quantitative Risk Simulation of Aquifer CO2 Disposal Economics for Alberta; Int. J. Soc. Mater. Eng. Resour. 1999, 7 (1), 55-72.
  • Gunter, W.D.; Perkins, E.H.; Hutcheon, I. Aquifer Disposal of Acid Gases: Modelling of Water—Rock Reactions for Trapping of Acid Wastes; Appl. Geochem. 2000, 15 (8), 1085-1095.
  • Gunter, W.D.; Wiwchar, B.; Perkins, E.H. Aquifer Disposal of CO2- Rich Greenhouse Gases. Extension of the Time Scale of Experiment for CO2 -Sequestering Reactions by Geochemical Modeling; Mineral. Petrol. 1997, 59 (1–2), 121-140.
  • Ross, G.D.; Todd, A.C.; Tweedie, J.A. The Effect of Simulated CO2 Flooding on the Permeability of Reservoir Rocks. In Enhanced Oil Recovery; Fayers, F.J., Ed.; Elsevier: Amsterdam, 2003; pp 351-366.
  • Shiraki, R.; Dunn, T.L. Experimental Study on Water-Rock Interactions during CO2 Flooding in the Tensleep Formation, Wyoming, USA; Applied Geochem. 2000, 15, 265-279.
  • Sayegh, S.G.; Krause, F.F.; Girard, M.; DeBree, C. Rock/Fluid Interactions of Carbonated Brines in a Sandstone Reservoir: Pembina Cardium, Alberta, Canada. SPE Formation Eval. 1990, December, 399-405.
  • Bowker, K.A.; Shuler, P.J. Carbon Dioxide Injection and Resultant Alteration of the Weber Sandstone, Rangely Field, Colorado; AAPG Bull. 1991, 75 (9), 1489-1499.
  • Hendriks, C.A.; Blok, K. Underground Storage of Carbon Dioxide. Energy Convers. Mgmt. 1993, 34 (9–11), 949-957.
  • Law, D.H.; Bachu, S. Hydrogeological and Numerical Analysis of CO2 Disposal in Deep Aquifers in the Alberta Sedimentary Basin; Energy Convers. Mgmt. 1996, 37 (6–8), 1167-1174.
  • van der Meer, L.G.H. The Conditions Limiting CO2 Storage in Aquifers; Energy Convers. Mgmt. 1993, 34 (9–11), 959-966.
  • Saripalli, P.; McGrail, P. Semi-Analytical Approaches to Modeling Deep Well Injection of CO2 for Geological Sequestration; Energy Convers. Mgmt. 2002, 43, 185-198.
  • Palandri, J.L.; Kharaka, Y.K. Adding Kinetics to Equilibrium-Based Geochemical Modeling of CO2 Sequestration. Presented at the Annual Meeting of the Geological Society of America, 2002.
  • Stevens, S.H.; Fox, C.E.; Melzer, L.S. McElmo Dome and St. Johns Natural CO2 Deposits: Analogs for Geologic Sequestration. Presented at the 5th International Conference on Greenhouse Gas Control Technologies, Cairns, Australia, 2000.
  • Stevens, S.H.; Pearce, J.M.; Rigg, A.A.J. Natural Analogs for Geologic Storage of CO2 : An Integrated Global Research Program; National Energy Technology Laboratory: Pittsburgh, PA, 2001; pp 1-12. Available at: http://www.netl.doe.gov/publications/proceedings/01/carbon_seq/6a1. pdf.
  • Stevens, S.H.; White, T.; Melzer, S.; Byrer, C. Production Operations at Natural CO2 Fields: Technologies for Geologic Sequestration. In Proceedings of GHGT-6, Kyoto, 2002; pp E1-4.
  • Broadhead, R.F. Carbon Dioxide in Northeast New Mexico; West Texas Geological Soc. Bull. 1993, 32 (7), 5-8.
  • Broadhead, R.F. Carbon Dioxide in Union and Harding Counties; New Mexico Geological Soc. Guidebook 1987, 38, 339-349.
  • Pearce, J.M.; Holloway, S.; Wacker, H.; Nelis, M.K.; Rochelle, C.; Bateman, K. Natural Occurrences as Analogues for the Geological Disposal of Carbon Dioxide; Energy Convers. Mgmt. 1996, 37 (6-8), 1123-1128.
  • Rochelle, C.A.; Bateman, K.; Pearce, J.M. Fluid-Rock Interactions Resulting from the Underground Disposal of Carbon Dioxide. In Proceedings of the International Symposium on the Geochemistry of the Earth’s Surface, 1996; pp 448-452.
  • Baines, S.J.; Worden, R.H. Geological CO2 Disposal: Understanding the Long-Term Fate of CO2 in Naturally Occurring Accumulations. Presented at the 5th International Conference on Greenhouse Gas Control Technologies, Cairns, Australia, 2000.
  • White, S.P.; Allis, R.G.; Moore, J.; Chidsey, T.; Morgan, C.; Gwynn, W.; Adams, M. Natural CO2 Reservoirs on the Colorado Plateau and Southern Rocky Mountains, USA: A Numerical Model. In Proceedings of GHGT-6, Kyoto, 2002; pp E1-3.
  • Pearce, J.M.; Baker, J.; Beaubien, S.; Brune, S.; Czernichowski-Lauriol, I.; Faber, E.; Hatziyannis, G.; Hildenbrand, A.; Kroos, B.M.; Lombardi, S.; et al. Natural CO2 Accumulations in Europe: Understanding Long-Term Geological Processes in CO2 Sequestration. In Proceedings of GHGT-6, Kyoto, 2002; pp E1-1.
  • Pearce, J.M.; Nador, A.; Toth, E. Living with CO2 : Experiences from Hungary; Greenhouse Issues 2002, Issue 58. Available at: http://www. ieagreen.org.uk/jan58.htm.
  • Czernichowski-Lauriol, I.; Pauwels, H.; Vigouroux, P.; Le Nindre, Y.-M. The French Carbogaseous Province: An Illustration of Natural Processes of CO2 Generation, Migration, Accumulation and Leakage. In Proceedings of GHGT-6, Kyoto, 2002; pp E1-2.
  • McDonald, A.J. Seismicity of the Witwatersrand Basin; M.Sc. Thesis, University of Witwatersrand, Johannesburg, South Africa, 1982.
  • McGarr, A.; Simpson, D.; Seeber, L. Case Histories of Induced and Triggered Seismicity. In International Handbook of Earthquake and Engineering Seismology; Lee, W.H.K., Kanamori, H., Jenning, P.C., Kisslinger, C., Eds.; Academic Press: San Diego, CA, 2002.
  • Cypser, D.A. Induced Earthquake Bibliography. Available at: http://www.nyx.net/[H11011]dcypser/induceq/iis.html.
  • Evans, D.M. Man-Made Earthquakes in Denver; Geotimes 1966, 10 (9), 11-17.
  • Healy, J.H.; Rubey, W.W.; Griggs, D.T.; Raleigh, C.B. The Denver Earthquakes; Science 1968, 161, 1301-1310.
  • Major, M.; Simon, R. Colorado School of Mines Quarterly 1968, 63 (9).
  • Hsieh, P.A.; Bredehoeft, J.D.A. Reservoir Analysis of the Denver Earthquakes: A Case of Induced Seismicity; J. Geophys. Res. 1981, 86, 903-920.
  • Ake, J.; Maher, K.; Block, L. Status Report—Paradox Valley Project, Southwestern Colorado; Technical Memo D8330-2000-012; 1999.
  • Raleigh, C.B.; Healy, J.H.; Bredehoeft, J.D. An Experiment in Earthquake Control at Rangely, Colorado; Science 1976, 191, 1230-1237.
  • Sminchak, J.; Gupta, N.; Byrer, C.; Bergman, P. Issues Related to Seismic Activity Induced by the Injection of CO2 in Deep Saline Aquifers; National Energy Technology Laboratory: Pittsburgh, PA, 2001; pp 1-15. Available at: http://www.netl.doe.gov/publications/proceedings/01/carbon_seq/p37.pdf.
  • Cypser, D.A.; Davis, S.D. Liability for Induced Earthquakes; J. Environ. Law Litigation 1994, 9, 551-589.
  • Harlow, I.F. Waste Problems of a Chemical Company; Indust. Eng. Chem. 1939, 31 (11), 1346-1349.
  • Tsang, C.-F.; Benson, S.M.; Kobelski, B.; Smith, R.E. Scientific Considerations Related to Regulation Development for CO2 Sequestration in Brine Formations; Environmental Geology 2002, 42, 275-281.
  • Czernichowski-Lauriol, B.S.; Rochelle, C.; Bateman, K.; Pearce, P.; Blackwell, P. Area 5—Inorganic Chemistry. In The Underground Disposal of Carbon Dioxide; Halloway, S., Ed.; British Geological Survey: Keyworth, UK, 1996.
  • Davis, S.D.; Pennington, W.D. Induced Seismic Deformation in the Cogdell Oil Field of West Texas; Bull. Seismological Society America 1989, 79, 1477-1494.
  • Melcer, A.; Gerrish, H.W. Effects of Formation Damage on Injection Operations and on Pressure Transient Tests. In Deep Injection Disposal of Hazardous and Industrial Waste; Apps, J.A., Tsang, C., Eds.; Academic Press: San Diego, CA, 2000; pp 277-286.
  • Geology News: Geoscience at the BA: Putting Something Back; Geological Society of London: London, UK, Sept 11, 2002. Available at: http://www.geolsoc.org.uk/template.cfm?name[H11005]BA2002H.
  • Key, M. Occupational Diseases, A Guide to Their Recognition; U.S. Department of Health, Education, and Welfare: Washington, DC, 1977.
  • Jaffe, P.R.; Wang, S. Potential Effect of CO2 Releases from Deep Reservoirs on the Quality of Fresh-Water Aquifers. Presented at GHGT-6, Kyoto, 2002. Available at: http://www.ieagreen.org.uk/ghgt6.htm.
  • Wang, S.; Jaffe, P. Dissolution of Trace Metals in Potable Aquifers Due to CO2 Releases from Deep Formations; Groundwater 2003, in press.
  • Clayton, J.L.; Leventhal, J.S.; Rice, D.D.; Pashin, J.C.; Mosher, B.; Czepiel, P. Atmospheric Methane Reflux from Coals—Preliminary Investigation of Coal Mines and Geologic Structures in the Black Warrior Basin, Alabama. In The Future of Energy Gases; Howell, D.G., Ed.; U.S. Geological Survey Professional Paper 1570; U.S. Geological Survey: Denver, CO, 1993; pp 471-492.
  • Clayton, J.L.; Leventhal, J.S.; Rice, D.D.; Kotarba, M.; Korus, A. Atmospheric Methane Flux from U.S. and Polish Coals. In Organic Geochemistry: Developments and Applications to Energy, Climate, Environmental and Human History; Grimalt, J.O., Dorron, C., Eds.; AIGOA: San Sebastian, Spain, 1995.
  • Sloss, L.L.; Davidson, R.M.; Clarke, L.B. Coalbed Methane Extraction; IEA: London, 1995.
  • Kuuskraa, V.; Brandenburg, C.F. Coalbed Methane Sparks a New Energy Industry; Oil Gas Journal 1989, 87 (41), 49-56.
  • Rice, D.D.; Law, B.E.; Clayton, J.L. Coalbed Gas—An Undeveloped Resource. In The Future of Energy Gases; Howell, D.G., Ed.; U.S. Geological Survey Professional Paper 1570; U.S. Geological Survey: Denver, CO, 1993; pp 389-404.
  • Kaiser, W.R.; et al. Hydrology of the Fruitland Formation; Topical Report No. GRI-91/0072; Gas Research Institute: 1991.
  • Hawkins, D.G. Passing Gas: Policy Implications of Leakage from Geologic Carbon Storage Sites. In Proceedings of GHGT-6, Kyoto, 2002; pp B2-1.
  • Pacala, S.W. Global Constraints on Reservoir Leakage. In Proceedings of GHGT-6, Kyoto, 2002; pp B2-4.
  • Hepple, R.P.; Benson, S.M. Implications of Surface Seepage on the Effectiveness of Geologic Storage of Carbon Dioxide as a Climate Change Mitigation Strategy. In Proceedings of GHGT-6, Kyoto, 2002; pp A2-3.
  • Celia, M.A.; Bachu, S. Geological Sequestration of CO2 : Is Leakage Unavoidable and Acceptable? In Proceedings of GHGT-6, Kyoto, 2002; pp G1-2.
  • Dooley, J.J.; Wise, M.A. Why Injecting CO2 into Various Geologic Formations Is Not the Same as Climate Change Mitigation: The Issue of Leakage. In Proceedings of GHGT-6, Kyoto, 2002; pp B2-5.
  • Lindeberg, E. The Quality of a CO2 Repository: What Is the Sufficient Retention Time of CO2 Stored Underground? In Proceedings of GHGT-6, Kyoto, 2002; pp B2-2.
  • Wigley, T.M.L., Richels, R.; Edmonds, J. Economic and Environmental Choices in Stabilization of Atmospheric CO2 Concentations; Nature 1996, 379, 240-243.
  • Nakicenovic, N.; et al. Special Report on Emissions Scenarios (SRES); Cambridge University Press: New York, 2000.
  • Edmonds, J.; Clarke, J.; Dooley, J.; Kim, S.H.; Smith, S.J. Stabilization of CO2 in a B2 World: Insights on the Roles of Carbon Capture and Disposal, Hydrogen, and Transportation Technologies; Joint Global Change Research Institute: College Park, MD, 2000.
  • Herzog, H.; Caldeira, K.; Reilly, J. An Issue of Permanence: Assessing the Effectiveness of Temporary Carbon Storage; Climatic Change 2003, in press. Available at: http://sequestration.mit.edu/pdf/climate_ change.pdf.
  • Ha-Duong, M. CO2 Sequestration: Normative Economics of Leakage; Clean Technology and Environmental Policy 2002, in press. Available at: http://www.andrew.cmu.edu/user/mduong/HaDuong-2002-CO2 SequestrationNormativeEconomicsLeakage.pdf.
  • Anderson, R.P.; Vogh, J.W. Identification of Injected Storage Gas; Oper Sect. Proc. -Am. Gas Assoc 1988, 526-535.
  • Anderson, R.P.; Vogh, J.W. Various Tracers Identify Injected Storage Gas; Oil & Gas Journal 1989, 87, 52-56.
  • Anderson, R.P.; Vogh, J.W. Gas Identification—Major Tracer Gas Migration and Stability; Oil Gas J. 1989, 87 (15), 44-51.
  • Klusman, R.W. A Protocol for Detection of Surface Leakage from a CO2 Injection Project; Fuel Chem. Division Preprints 2002, 47 (1), 3-4.
  • Thimons, E.D.; Bielicki, R.J.; Kissel, F.N. Using Sulfur Hexafluoride as a Gaseous Tracer to Study Ventilation Systems in Mines; 7916; U.S. Dept of Int. Library: Washington, DC, 1974.
  • Thimons, E.D.; Kissel, F.N. Tracer Gas as an Aid in Mine Ventilation Analysis; 7917; U.S. Dept. of the Int. Library: Washington, DC, 1974.
  • Matta, J.E.; Maksimovic, S.D.; Kissell, F.N. Tracer Gas Method for Measuring Leakage through Mine Stoppings; 8324; U.S. Dept. of the Int. Library: Washington, DC, 1978.
  • Vinson, R.P.; Kissell, F.N. Three Coal Mine Ventilation Studies Using Sulfur Hexafluoride Tracer Gas; 8142; U.S. Dept of the Int. Library: Washington, DC, 1976.
  • Araktingi, R.E.; Benefield, M.E.; Bessenyei, Z.; Coats, K.H.; Tek, M.R. Leroy Storage Facility, Uinta County, Wyoming: A Case History of Attempted Gas-Migration Control; J. Petroleum Technology 1984, January, 132-140.
  • Craig, F.F., III. Field Use of Halogen Compounds to Trace Injected CO2 ; Presented at the 60th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Las Vegas, NV September 22–25, 1985; SPE paper 14309.
  • Carr, L.; Wong, F.; Nagel, R.; McIntyre, F.; Rosenegger, A. Application of Chemical Tracers in Monitoring Injection in Vertical Hydrocarbon Miscible Floods; J. Canadian Petroleum Technol. 1997, 36 (8), 43-55.
  • Blencoe, J.G.; Cole, D.R.; Horita, J.; Moline, G.R. Experimental Geo-chemical Studies Relevant to Carbon Sequestration; National Energy Technology Laboratory: Pittsburgh, PA, 2001; pp 1-14. Available at: http://www.netl.doe.gov/publications/proceedings/01/carbon_seq/p31. pdf.
  • Wang, Z.; Nur, A.M. Effects of CO2 Flooding on Wave Velocities in Rocks with Hydrocarbons; SPE Reservoir Eng. 1989, November, 429-436.
  • Shuck, E.L.; Davis, T.L.; Benson, R.D. Multicomponent 3-D Characterization of a Coalbed Methane Reservoir; Geophysics 1996, 61 (2), 315-330.
  • Ramos, A.C.B.; Davis, T.L. 3-D AVO Analysis and Modeling Applied to Fracture Detection in Coalbed Methane Reservoirs. In Fractured Reservoirs: Characterization and Modeling Guidebook; Hoak, T.E., Klawitter, A.L., Blomquist, P.K., Eds.; The Rocky Mountain Association of Geologists: Denver, CO, 1997; pp 165-176.
  • Eiken, O.; Brevik, I.; Arts, R.; Lindeberg, E. Seismic Monitoring of CO2 Injected into a Marine Aquifer. Presented at the 5th International Conference on Greenhouse Gas Control Technologies, Cairns, Australia, 2000.
  • Arts, R.; Eiken, O.; Chadwick, A.; Zweigel, P.M.L.; Zinsner, B. Monitoring of CO2 Injected at Sleipner Using Time Lapsed Seismic Data. In Proceedings of GHGT-6, Kyoto, 2002. Available at: http://www. ieagreen.org.uk/ghgt6.htm.
  • Arts, R.; Brevik, I.; Eiken, O.; Solle, R.; Causse, E.; van der Meer, B. Geophysical Methods for Monitoring Marine Aquifer CO2 Storage— Sleipner Experiences. Presented at the 5th International Conference on Greenhouse Gas Control Technologies, Cairns, Australia, 2000.
  • Durnford, L. Seismic Hubble Bubble; Radio Nederland Wereldomroep: Hilversum, The Netherlands, 2002. Available at: http://www.rnw.nl/science/html/bubble021119.html.
  • Burrowes, G.; Gilboy, C. Investigating Sequestration Potential of Carbonate Rocks during Tertiary Recovery from a Billion Barrel Oil Field, Wey-burn, Saskatchewan: the Geoscience Framework (IEA Weyburn CO2 Monitoring and Storage Project); National Energy Technology Laboratory: Pittsburgh, PA, 2001; pp 1-20. Available at: http://www.netl.doe.gov/publications/proceedings/01/carbon_seq/p20.pdf.
  • Newmark, R.L.; Ramirez, A.L.; Daily, W.D. Monitoring Carbon Dioxide Sequestration Using Electrical Resistance Tomography (ERT): Sensitivity Studies; National Energy Technology Laboratory: Pittsburgh, PA, 2001; pp 1-18. Available at: http://www.netl.doe.gov/publications/proceedings/01/carbon_seq/7a1.pdf.
  • Westrich, H.; Lorenz, J.; Cooper, S.; Colon, C.J.; Warpinski, N.; Zhang, D.; Bradley, C.; Lichtner, P.; Pawar, R.; Stubbs, B.; et al. Sequestration of CO2 in a Depleted Oil Reservoir: An Overview; National Energy Technology Laboratory: Pittsburgh, PA, 2001; pp 1-11. Available at: http://www.netl.doe.gov/publications/proceedings/01/carbon_seq/2a3.pdf.
  • Fanchi, J.R. Feasibility of Monitoring CO2 Sequestration in a Mature Oil Field Using Time-Lapse Seismic Analysis. Presented at the SPE/EPA/DOE Exploration and Production Environmental Conference, San Antonio, TX, February 26–28, 2001.
  • Fanchi, J.R. Predicting 4D Seismic Performance Using an Integrated Flow Model. In Proceedings of Annual Technical Conference and Exhibition, Houston, TX, October 3–6, 1999; pp 335-345.
  • White, C.M.; Houck, R.K; J. High Resolution Chromatog. Chromatog.Comm. 1986, 9, 4-17.
  • Bachu, S. Energy Convers. Mgmt. 2000, 41, 953-970.
  • Pidwirny, M. J. Fundamentals of Physical Geography 9(r): The Carbon Cycle; Department of Geography, Okanagan University College: Kelowna, British Columbia, Canada, 2000. Available at: http://www. geog.ouc.bc.ca/physgeog/contents/9r.html.
  • Greenhouse Issues 2000, Issue 51; p 3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.