250
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Uniform convergence rate of the kernel regression estimator adaptive to intrinsic dimension in presence of censored data

ORCID Icon &
Pages 864-914 | Received 29 Dec 2019, Accepted 03 Oct 2020, Published online: 17 Oct 2020

References

  • Akaike, H. (1954), ‘An Approximation to the Density Function’, Annals of the Institute of Statistical Mathematics, 6, 127–132.
  • Auestad, B., and Tjøstheim, D. (1991), ‘Functional Identification in Nonlinear Time Series’, Nonparametric Functional Estimation and Related Topics, eds. G. Roussas, volume 335 of NATO ASI Series, Springer Netherlands, pp. 493–507.
  • Bousquet, O. (2002), ‘A Bennett Concentration Inequality and Its Application to Suprema of Empirical Processes’, Comptes Rendus Mathematique, 334(6), 495–500.
  • Bouzebda, S. (2012), ‘On the Strong Approximation of Bootstrapped Empirical Copula Processes with Applications’, Mathematical Methods of Statistics, 21(3), 153–188.
  • Bouzebda, S., and Didi, S. (2017), ‘Additive Regression Model for Stationary and Ergodic Continuous Time Processes’, Communications in Statistics -- Theory and Methods, 46(5), 2454–2493.
  • Bouzebda, S., and Elhattab, I. (2011), ‘Uniform-in-bandwidth Consistency for Kernel-type Estimators of Shannon's Entropy’, Electronic Journal of Statistics, 5, 440–459.
  • Bouzebda, S., and Chokri, K. (2014), ‘Statistical Tests in the Partially Linear Additive Regression Models’, Statistical Methodology, 19, 4–24.
  • Bouzebda, S., and Nemouchi, B. (2020), ‘Uniform Consistency and Uniform in Bandwidth Consistency for Nonparametric Regression Estimates and Conditional U-statistics Involving Functional Data’, Journal of Nonparametric Statistics, 32(2), 452–509.
  • Bouzebda, S., Chokri, K., and Louani, D. (2016), ‘Some Uniform Consistency Results in the Partially Linear Additive Model Components Estimation’, Communications in Statistics – Theory and Methods, 45(5), 1278–1310.
  • Bouzebda, S., Elhattab, I., and Seck, C.T. (2018), ‘Uniform in Bandwidth Consistency of Nonparametric Regression Based on Copula Representation’, Statistics & Probability Letters, 137, 173–182.
  • Breiman, L., and Friedman, J.H. (1985), ‘Estimating Optimal Transformations for Multiple Regression and Correlation’, Journal of the American Statistical Association, 80(391), 580–619. With discussion and with a reply by the authors.
  • Brunel, E., and Comte, F. (2006), ‘Nonparametric Adaptive Regression Estimation in Presence of Censoring’.
  • Buja, A., Hastie, T., and Tibshirani, R. (1989), ‘Linear Smoothers and Additive Models’, The Annals of Statistics, 17(2), 453–555.
  • Carbonez, A., Györfi, L., and van der Meulen, E.C. (1995), ‘Partitioning-estimates of a Regression Function Under Random Censoring’, Statistics and Risk Modeling, 13(1), 21–38.
  • Chacón, J.E., and Duong, T. (2018), Multivariate Kernel Smoothing and its Applications, Vol. 160 of Monographs on Statistics and Applied Probability. Boca Raton, FL: CRC Press.
  • Chambers, J.M., and Hastie, T.J. (1992), Statistical Models in S, Chapter Statistical models. Wadsworth and Brooks/Cole.
  • Chen, R., Härdle, W., Linton, O., and Severance-Lossin, E. (1996), ‘Nonparametric Estimation of Additive Separable Regression Models’, in Statistical Theory and Computational Aspects of Smoothing, eds. W. Härdle and M. Schimek, Contributions to Statistics, Physica-Verlag HD, pp. 247–265.
  • Collomb, G. (1981), ‘Estimation Non-paramétrique De La Régression: Revue Bibliographique’, International Statistical Review, 49(1), 75–93.
  • Cover, T.M., and Thomas, J.A. (2006), Elements of Information Theory (2nd ed.), Hoboken NJ: Wiley-Interscience [John Wiley & Sons].
  • Csiszár, I. (1962), ‘Informationstheoretische Konvergenzbegriffe Im Raum Der Wahrscheinlichkeitsverteilungen’, Magyar Tud. Akad. Mat. Kutató Int. Közl., 7, 137–158.
  • Deheuvels, P. (2000), ‘Uniform Limit Laws for Kernel Density Estimators on Possibly Unbounded Intervals’, in Recent advances in reliability theory (Bordeaux, 2000), Stat. Ind. Technol., Boston, MA: Birkhäuser Boston; pp. 477–492.
  • Deheuvels, P. (2011), ‘One Bootstrap Suffices to Generate Sharp Uniform Bounds in Functional Estimation’, Kybernetika (Prague), 47(6), 855–865.
  • Deheuvels, P., and Mason, D.M. (2004), ‘General Asymptotic Confidence Bands Based on Kernel-type Function Estimators’, Statistical Inference for Stochastic Processes, 7(3), 225–277.
  • Devroye, L. (1987), ‘A Course in Density Estimation’, Vol. 14 of Progress in Probability and Statistics. Boston, MA: Birkhäuser Boston, Inc.
  • Devroye, L., and Györfi, L. (1985), Nonparametric Density Estimation. Wiley Series in Probability and Mathematical Statistics: Tracts on Probability and Statistics. New York: John Wiley & Sons, Inc.
  • Devroye, L., and Lugosi, G. (2001), Combinatorial Methods in Density Estimation. Springer Series in Statistics. New York: Springer-Verlag.
  • Dony, J., and Einmahl, U. (2009), ‘Uniform in Bandwidth Consistency of Kernel Regression Estimators at a Fixed Point”, In High dimensional probability V: the Luminy volume, Vol. 5 of Inst. Math. Stat. (IMS) Collect., Beachwood, OH: Inst. Math. Statist., pp. 308–325.
  • Dudewicz, E.J., and van der Meulen, E.C. (1981), ‘Entropy-based Tests of Uniformity’, Journal of the American Statistical Association, 76(376), 967–974.
  • Dudley, R.M. (2014), Uniform Central Limit Theorems, (2nd ed.), Vol. 142 of Cambridge Studies in Advanced Mathematics. New York: Cambridge University Press.
  • Ebrahimi, N., Habibullah, M., and Soofi, E. (1992), ‘Testing Exponentiality Based on Kullback-Leibler Information’, Journal of the Royal Statistical Society Series B, 54(3), 739–748.
  • Eggermont, P.P.B., and LaRiccia, V.N. (2001), Maximum Penalized Likelihood Estimation. (Vol. I). Springer Series in Statistics. New York: Springer-Verlag.
  • Einmahl, U., and Mason, D.M. (2000), ‘An Empirical Process Approach to the Uniform Consistency of Kernel-type Function Estimators’, Journal of Theoretical Probability, 13(1), 1–37.
  • Einmahl, U., and Mason, D.M. (2005), ‘Uniform in Bandwidth Co Nsistency of Kernel-type Function Estimators’, The Annals of Statistics, 33(3), 1380–1403.
  • Fan, J., and Gijbels, I. (1996), Local Polynomial Modelling and its Applications, Vol. 66 of Monographs on Statistics and Applied Probability. London: Chapman & Hall.
  • Federer, H. (1959), ‘Curvature Measures’, Transactions of the American Mathematical Society, 93(3), 418–491.
  • Földes, A., and Rejtö, L. (1981), ‘A Lil Type Result for the Product Limit Estimator’, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 56(1), 75–86.
  • Genovese, C.R., Perone-Pacifico, M., Verdinelli, I., and Wasserman, L.A. (2013), ‘Nonparametric Inference for Density Modes’, CoRR, abs/1312.7567.
  • Giné, E., and Nickl, R. (2009), ‘Uniform Limit Theorems for Wavelet Density Estimators’, Annals of Probability, 37(4), 1605–1646.
  • Giné, E., and Sang, H. (2013), ‘On the Estimation of Smooth Densities by Strict Probability densities at Optimal Rates in Sup-Norm,’ In From Probability to Statistics and Back: High-Dimensional Models and Processes, Vol. 9 of Inst. Math. Stat. (IMS) Collect., Beachwood, OH: Inst. Math. Statist., pp. 128–149.
  • Giné, E., Koltchinskii, V., and Sakhanenko, L. (2004), ‘Kernel Density Estimators: Convergence in Distribution for Weighted Sup-norms’, Probability Theory and Related Fields, 130(2), 167–198.
  • Gokhale, D.V., and Kullback, S. (1978), The Information in Contingency Tables, Vol. 23 of Statistics: Textbooks and Monographs. New York: Marcel Dekker, Inc.
  • Györfi, L., Kohler, M., Krzyżak, A., and Walk, H. (2002), A Distribution-Free Theory of Nonparametric Regression. Springer Series in Statistics. New York: Springer-Verlag.
  • Hall, P. (1984), ‘Asymptotic Properties of Integrated Square Error and Cross-validation for Kernel Estimation of a Regression Function’, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 67(2), 175–196.
  • Härdle, W. (1990), Applied Nonparametric Regression, Vol. 19 of Econometric Society Monographs. Cambridge: Cambridge University Press.
  • Härdle, W., and Marron, J.S. (1985), ‘Optimal Bandwidth Selection in Nonparametric Regression Function Estimation’, The Annals of Statistics, 13(4), 1465–1481.
  • Hein, M., and Audibert, J.-Y. (2005), ‘Intrinsic Dimensionality Estimation of Submanifolds in r d’, In Proceedings of the 22nd international conference on Machine learning, ACM, p. 289–296.
  • Hastie, T.J., and Tibshirani, R.J. (1990), Generalized Additive Models, Vol. 43 of Monographs on Statistics and Applied Probability. London: Chapman and Hall Ltd.
  • Jaynes, E.T. (1957), ‘Information Theory and Statistical Mechanics’, Physical Review (2), 106, 620–630.
  • Kaplan, E.L., and Meier, P. (1958), ‘Nonparametric Estimation From Incomplete Observations’, Journal of the American Statistical Association, 53(282), 457–481.
  • Kara-Zaitri, L., Laksaci, A., Rachdi, M., and Vieu, P. (2017), ‘Uniform in Bandwidth Consistency for Various Kernel Estimators Involving Functional Data’, Journal of Nonparametric Statistics, 29(1), 85–107.
  • Kégl, B. (2003), ‘Intrinsic Dimension Estimation Using Packing Numbers,’ In Advances in neural information processing systems, pp. 697–704.
  • Kim, J., Shin, J., Rinaldo, A., and Wasserman, L. (2018), ‘Uniform Convergence Rate of the Kernel Density Estimator Adaptive to Intrinsic Volume Dimension,’ arXiv e-prints, page arXiv:1810.05935.
  • Kim, J., Shin, J., Rinaldo, A., and Wasserman, L. (2019), ‘Uniform Convergence Rate of the Kernel Density Estimator Adaptive to Intrinsic Volume Dimension,’ In Proceedings of the 36th International Conference on Machine Learning, eds. K. Chaudhuri and R. Salakhutdinov, Vol. 97 of Proceedings of Machine Learning Research, Long Beach, California, USA. PMLR, pp. 3398–3407.
  • Kohler, M., Máthé, K., and Pintér, M. (2002), ‘Prediction From Randomly Right Censored Data’, Journal of Multivariate Analysis, 80(1), 73–100.
  • Kosorok, M.R. (2008), Introduction to Empirical Processes and Semiparametric Inference. Springer Series in Statistics. New York: Springer.
  • Kullback, S. (1959), Information Theory and Statistics, New York: John Wiley and Sons, Inc. London: Chapman and Hall, Ltd..
  • Ledoux, M. (1997), ‘On Talagrand's Deviation Inequalities for Product Measures’, ESAIM: Probability and Statistics, 1, 63–87.
  • Levina, E., and Bickel, P.J. (2005), ‘Maximum Likelihood Estimation of Intrinsic Dimension,’ In Advances in Neural Information Processing Systems, pp. 777–784.
  • Ling, N., and Vieu, P. (2018), ‘Nonparametric Modelling for Functional Data: Selected Survey and Tracks for Future’, Statistics, 52(4), 934–949.
  • Ling, N., Meng, S., and Vieu, P. (2019), ‘Uniform Consistency Rate of kNN Regression Estimation for Functional Time Series Data’, Journal of Nonparametric Statistics, 31(2), 451–468.
  • Linton, O., and Nielsen, J.P. (1995), ‘A Kernel Method of Estimating Structured Nonparametric Regression Based on Marginal Integration’, Biometrika, 82(1), 93–100.
  • Maillot, B., and Viallon, V. (2009), ‘Uniform Limit Laws of the Logarithm for Nonparametric Estimators of the Regression Function in Presence of Censored Data’, Mathematical Methods of Statistics, 18(2), 159–184.
  • Mammen, E., Linton, O., and Nielsen, J. (1999), ‘The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions’, The Annals of Statistics, 27(5), 1443–1490.
  • Mammen, E., Park, B.U., and Schienle, M. (2012), ‘Additive Models: Extensions and Related Models,’ SFB 649 Discussion Papers SFB649DP2012-045, Sonderforschungsbereich 649, Berlin: Humboldt University.
  • Mason, D.M. (2012), ‘Proving Consistency of Non-standard Kernel Estimators’, Statistical Inference for Stochastic Processes, 15(2), 151–176.
  • Mason, D.M., and Swanepoel, J.W.H. (2011), ‘A General Result on the Uniform in Bandwidth Consistency of Kernel-type Function Estimators’, TEST, 20(1), 72–94.
  • Mason, D.M., and Swanepoel, J.W.H. (2015), ‘Uniform in Bandwidth Consistency of Kernel Estimators of the Density of Mixed Data’, Electronic Journal of Statistics, 9(1), 1518–1539.
  • Mokkadem, A., and Pelletier, M. (2003), ‘The Law of the Iterated Logarithm for the Multivariable Kernel Mode Estimator’, ESAIM. Probability and Statistics = Probabilites Et Statistique, 7, 1–21.
  • Müller, H.-G. (1988), Nonparametric Regression Analysis of Longitudinal Data, Vol. 46 of Lecture Notes in Statistics. Berlin: Springer-Verlag.
  • Nadaraya, E. (1964), ‘On Estimating Regression’, Theory of Probability & Its Applications, 9(1), 141–142.
  • Nadaraya, E.A. (1989), Nonparametric Estimation of Probability Densities and Regression Curves, Vol. 20 of Mathematics and its Applications (Soviet Series). Dordrecht: Kluwer Academic Publishers Group.
  • Newey, W.K. (1994), ‘Kernel Estimation of Partial Means and a General Variance Estimator’, Econometric Theory, 10(2), 233–253.
  • Noh, Y.-K., Sugiyama, M., Liu, S., Plessis, M.C. d., Park, F.C., and Lee, D.D. (2018), ‘Bias Reduction and Metric Learning for Nearest-neighbor Estimation of Kullback-leibler Divergence’, Neural Computation, 30(7), 1930–1960. PMID: 29902113.
  • Nolan, D., and Pollard, D. (1987), ‘U-processes: Rates of Convergence’, The Annals of Statistics, 15(2), 780–799.
  • Novo, S., Aneiros, G., and Vieu, P. (2019), ‘Automatic and Location-adaptive Estimation in Functional Single-index Regression’, Journal of Nonparametric Statistics, 31(2), 364–392.
  • Opsomer, J.D., and Ruppert, D. (1997), ‘Fitting a Bivariate Additive Model by Local Polynomial Regression’, The Annals of Statistics, 25(1), 186–211.
  • Parzen, E. (1962), ‘On Estimation of a Probability Density Function and Mode’, The Annals of Mathematical Statistics, 33, 1065–1076.
  • Pollard, D. (1984), Convergence of Stochastic Processes. Springer Series in Statistics. New York: Springer-Verlag.
  • Pollard, D. (1990), Empirical Processes: Theory and Applications, Vol. 2 of NSF-CBMS Regional Conference Series in Probability and Statistics, Hayward, CA: Institute of Mathematical Statistics; Alexandria, VA: American Statistical Association.
  • Rachdi, M., and Vieu, P. (2007), ‘Nonparametric Regression for Functional Data: Automatic Smoothing Parameter Selection’, Journal of Statistical Planning and Inference, 137(9), 2784–2801.
  • Rényi, A. (1959), ‘On the Dimension and Entropy of Probability Distributions’, Acta Mathematica Academiae Scientiarum Hungaricae, 10, 193–215. (unbound insert).
  • Rosenblatt, M. (1956), ‘Remarks on Some Nonparametric Estimates of a Density Function’, The Annals of Mathematical Statistics, 27, 832–837.
  • Scott, D.W. (2015), Multivariate Density Estimation (2nd ed). Wiley Series in Probability and Statistics. Hoboken, NJ: John Wiley & Sons, Inc..
  • Shannon, C.E. (1948), ‘A Mathematical Theory of Communication’, Bell System Technical Journal, 27, 379–423. 623–656.
  • Silverman, B.W. (1986), Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability. London: Chapman & Hall.
  • Singh, R.S. (1977), ‘Applications of Estimators of a Density and Its Derivatives to Certain Statistical Problems’, Journal of the Royal Statistical Society Series B, 39(3), 357–363.
  • Sriperumbudur, B., and Steinwart, I. (2012), ‘Consistency and Rates for Clustering With Dbscan’, in Artificial Intelligence and Statistics, pp. 1090–1098.
  • Steinwart, I., and Christmann, A. (2008), Support Vector Machines. Information Science and Statistics, New York: Springer Science & Business Media.
  • Stone, C.J. (1985), ‘Additive Regression and Other Nonparametric Models’, The Annals of Statistics, 13(2), 689–705.
  • Stone, C.J. (1986), ‘The Dimensionality Reduction Principle for Generalized Additive Models’, The Annals of Statistics, 14(2), 590–606.
  • Stute, W. (1986), ‘Conditional Empirical Processes’, The Annals of Statistics, 14(2), 638–647.
  • Szepesvári, C., Audibert, J.-Y., and Farahmand, A.M. (2007), Manifold-adaptive dimension estimation. In Proceedings of the 24th international conference on Machine learning, pages 265–272. ACM.
  • Talagrand, M. (1994), ‘Sharper Bounds for Gaussian and Empirical Processes’, Annals of Probability, 22(1), 28–76.
  • Tapia, R.A., and Thompson, J.R. (1978), Nonparametric Probability Density Estimation, Vol. 1 of Johns Hopkins Series in the Mathematical Sciences. Baltimore, Md: Johns Hopkins University Press.
  • Tjøstheim, D., and Auestad, B.H. (1994), ‘Nonparametric Identification of Nonlinear Time Series: Projections’, Journal of the American Statistical Association, 89(428), 1398–1409.
  • Tsybakov, A.B. (1987), ‘On the Choice of Bandwidth in Nonparametric Kernel Regression’, Teor. Veroyatnost. i Primenen., 32(1), 153–159.
  • van der Vaart, A.W., and Wellner, J.A. (1996), Weak Convergence and Empirical Processes. Springer Series in Statistics. New York: Springer-Verlag, With applications to statistics.
  • Vasicek, O. (1976), ‘A Test for Normality Based on Sample Entropy’, Journal of the Royal Statistical Society Series B, 38(1), 54–59.
  • Verdugo Lazo, A.C.G., and Rathie, P.N. (1978), ‘On the Entropy of Continuous Probability Distributions’, IEEE Transactions on Information Theory, IT–24(1), 120–122.
  • Wand, M.P., and Jones, M.C. (1995), Kernel Smoothing, Vol. 60 of Monographs on Statistics and Applied Probability. London: Chapman and Hall, Ltd.
  • Watson, G.S. (1964), ‘Smooth Regression Analysis’, Sankhyā Series A, 26, 359–372.
  • Wertz, W. (1978), Statistical Density Estimation: A Survey, Vol. 13 of Angewandte Statistik und Ökonometrie [Applied Statistics and Econometrics]. Göttingen: Vandenhoeck & Ruprecht.
  • Ziegler, K. (2002), ‘On Nonparametric Kernel Estimation of the Mode of the Regression Function in the Random Design Model’, Journal of Nonparametric Statistics, 14(6), 749–774.
  • Ziegler, K. (2003), ‘On the Asymptotic Normality of Kernel Regression Estimators of the Mode in the Nonparametric Random Design Model’, Journal of Statistical Planning and Inference, 115(1), 123–144.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.