1,730
Views
9
CrossRef citations to date
0
Altmetric
Articles

Current stance on predictive analytics in higher education: opportunities, challenges and future directions

ORCID Icon, , ORCID Icon &
Pages 3503-3528 | Received 09 Apr 2020, Accepted 18 May 2021, Published online: 06 Jun 2021

References

  • Agudo-Peregrina, F., Iglesias-Pradas, S., Conde-González, M., & Hernández-García, A. (2014). Can we predict success from log data in vles? Classification of interactions for learning analytics and their relation with performance in vle-supported f2f and online learning. Computers in Human Behavior, 31(1), 542–550. https://doi.org/10.1016/j.chb.2013.05.031
  • Aguiar, E., Ambrose, G. A. A., Chawla, V. N., Goodrich, V., & Brockman, J. (2014). Engagement vs performance: Using electronic portfolios to predict first semester engineering student persistence. Journal of Learning Analytics, 1(3), 7–33. https://doi.org/10.18608/jla.2014.13.3
  • Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine Learning, 6(1), 37–66.
  • Ahmad, F., Ismail, N. H., & Aziz, A. A. (2015). The prediction of students’ academic performance using classification data mining techniques. Applied Mathematical Sciences, 9(129), 6415–6426.
  • Alharbi, Z., Cornford, J., Dolder, L., & De La Iglesia, B. (2016, July 13–15). Using data mining techniques to predict students at risk of poor performance. Proceedings of 2016 SAI Computing Conference, SAI 2016, 523–531.
  • Ali, L., Asadi, M., Gaševic, D., Jovanoví c, J., & Hatala, M. (2013). Factors’ influencing beliefs for adoption of a learning analytics tool: An empirical study. Computers & Education, 62(3), 130–148. https://doi.org/10.1016/j.compedu.2012.10.023
  • Araque, F., Roldán, C., & Salguero, A. (2009). Factors influencing university drop out rates. Computers & Education, 53(3), 563–574. https://doi.org/10.1016/j.compedu.2009.03.013
  • Asif, R., Merceron, A., Abbas, S., & Ghani, N. (2017). Computers education analyzing undergraduate students’ performance using educational data mining. Computers & Education, 113, 177–194. https://doi.org/10.1016/j.compedu.2017.05.007
  • Baker, R. S. J. d., Merceron, A., & Pavlik, P.I. (2010). Data mining for education. International Encyclopedia of Education, 7(3), 112–118. https://doi.org/10.1016/B978-0-08-044894-7.01318-X
  • Baradwaj, B. K., & Pal, S. (2012). Mining educational data to analyze students’ performance. Preprint arxiv, 1201, 3417.
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Wadsworth International Group.
  • Burgos, C., Campanario, M. L., De, D., Lara, J. A., Lizcano, D., & Martínez, M. A. (2018). Data mining for modeling students’ performance: A tutoring action plan to prevent academic dropout, Computers & Electrical Engineering, 66, 541–556. https://doi.org/10.1016/j.compeleceng.2017.03.005
  • Cerezo, R., Miguel, S., & Nú, J. C. (2016). Computers education students’ lms interaction patterns and their relationship with achievement: A case study in higher education. Computers & Education, 96, 42–54. https://doi.org/10.1016/j.compedu.2016.02.006
  • Chai, T., & Draxler, R. R. (2014). Root mean square error (rmse) or mean absolute error (mae)? -arguments against avoiding rmse in the literature. Geoscientific Model Development, 7(3), 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014
  • Chatti, M. A., Dyckhoff, A. L., Schroeder, U., & Thüs, H. (2012). A reference model for learning analytics. International Journal of Technology Enhanced Learning, 4(5/6), 318–331. https://doi.org/10.1504/IJTEL.2012.051815
  • Chui, K. T., Fung, D. C. L., Lytras, M. D., & Lam, T. M. (2018). Predicting atrisk university students in a virtual learning environment via a machine learning algorithm. Computers in Human Behavior, 6(December 2017), 0–1. https://doi.org/10.1016/j.chb.2018.06.032
  • Cohen, W. W. (1995, January 1). Fast effective rule induction. Twelfth International Conference on Machine Learning, Morgan Kaufmann, 115–123.
  • Cole, J., & Foster, H. (2007). Using Moodle: Teaching with the popular open source course management system. O’Reilly Media, Inc.
  • Conijn, R., Snijders, C., Kleingeld, A., & Matzat, U. (2017). Predicting student performance from lms data: A comparison of 17 blended courses using moodle lms. IEEE Transactions on Learning Technologies, 10(1), 17–29. https://doi.org/10.1109/TLT.2016.2616312
  • Corrigan, O., Smeaton, A. F., Glynn, M., & Smyth, S. (2015). Using educational analytics to improve test performance. In Design for teaching and learning in a networked world (pp. 42–55). Cham: Springer.
  • Costa, E. B., Fonseca, B., Santana, M. A., de Araújo, F. F., & Rego, J. (2017). Evaluating the effectiveness of educational data mining techniques for early prediction of students’ academic failure in introductory programming courses. Computers in Human Behavior, 73, 247–256. 5 Start. https://doi.org/10.1016/j.chb.2017.01.047
  • Dahlstrom, E., Grunwald, P., de Boor, T., & Vockley, M. (2011). Ecar national study of students and information technology in higher education, 2011. EDUCUASE Center for Applied Research. Retrieved from http://net. educause. edu/ir/library/pdf/ERS1103/ERS1103W. pdf
  • Delen, D. (2010). A comparative analysis of machine learning techniques for student retention management. Decision Support Systems, 49(4), 498–506. https://doi.org/10.1016/j.dss.2010.06.003
  • DesJardins, S. L., Ahlburg, D. A., & McCall, B. P. (1999). An event history model of student departure. Economics of Education Review, 18(3), 375–390. https://doi.org/10.1016/S0272-7757(98)00049-1
  • Duarte, R., Ramos-Pires, A., & Gonçalves, H. (2015). Identifying at-risk students in higher education. Quality Control and Applied Statistics, 60(5), 557–558.
  • Ernerst, P. T. T., & Pascarella, T. (2004). How college affects students. Fenxi Huaxue, 32(10), 1365–1367.
  • Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine.
  • Freund, Y., & Schapire, R. R. E. (1996, January 22). Experiments with a new boosting algorithm. International Conference on Machine Learning, 148–156.
  • Gaines, B. R., & Compton, P. (1995). Induction of ripple-down rules applied to modeling large databases. Journal of Intelligent Information Systems, 5(3), 211–228. https://doi.org/10.1007/BF00962234
  • Gaševic, D., Dawson, S., Rogers, T., & Gasevic, D. (2016). Learning analyticś should not promote one size fits all: The effects of instructional conditions in predicting academic success. The Internet and Higher Education, 28, 68–84. https://doi.org/10.1016/j.iheduc.2015.10.002
  • Green, L., & Celkan, G. (2011). Student demographic characteristics and how they relate to student achievement. Procedia - Social and Behavioral Sciences, 15, 341–345. https://doi.org/10.1016/j.sbspro.2011.03.098
  • Hachfeld, A., Anders, Y., Schroeder, S., Stanat, P., & Kunter, M. (2010). Does immigration background matter? How teachers’ predictions of students’ performance relate to student background. International Journal of Educational Research, 49(2-3), 78–91. https://doi.org/10.1016/j.ijer.2010.09.002
  • Hall, M., & Frank, E. (2008, May 15–17). Combining naive bayes and decision tables. In D.L. Wilson & H. Chad (Eds), Proceedings of Twenty-First International Florida Artificial Intelligence Research Society Conference (pp. 318–319). Coconut Grove, Florida, USA: AAAI Press.
  • Helal, S., Li, J., Liu, L., Ebrahimie, E., Dawson, S., Murray, D. J., & Long, Q. (2018). Predicting academic performance by considering student heterogeneity. Knowledge-Based Systems, 161(July), 134–146. https://doi.org/10.1016/j.knosys.2018.07.042
  • Herrmannova, D., Hlosta, M., Kuzilek, J., & Zdrahal, Z. (2015). Evaluating weekly predictions of at-risk students at the open university: Results and issues. EDEN 2015 Annu. Conf. Expand. Learn. Scenar. Open. Out Educ. Landsc., 9–12.
  • Hlosta, M., Zdrahal, Z., & Zendulka, J. (2017, March 13–17). Ouroboros: early identification of at-risk students without models based on legacy data. LAK17 – Seventh International Learning Analytics Knowledge Conference, 6–15.
  • Hoffait A.-S., & Schyns, M. (2017). Early detection of university students with potential difficulties. Decision Support Systems, 101, 1–11. https://doi.org/10.1016/j.dss.2017.05.003
  • Holmes, G., Pfahringer, B., Kirkby, R., Frank, E., & Hall, M. (2001, August). Multiclass alternating decision trees. In European Conference on Machine Learning (pp. 161–172). Berlin, Heidelberg: Springer.
  • Howard, E., Meehan, M., & Parnell, A. (2018). Contrasting prediction methods for early warning systems at undergraduate level. The Internet and Higher Education, 37(January), 66–75. https://doi.org/10.1016/j.iheduc.2018.02.001
  • Hu, Y. H., Lo, C. L., & Shih, S. P. (2014). Developing early warning systems to predict students’ online learning performance. Computers in Human Behavior, 36, 469–478. https://doi.org/10.1016/j.chb.2014.04.002
  • Huang, S., & Fang, N. (2013). Predicting student academic performance in an engineering dynamics course: A comparison of four types of predictive mathematical models. Computers and Education, 61(1), 133–145. https://doi.org/10.1016/j.compedu.2012.08.015
  • Ioanna Lykourentzou, G. M. V. N., Giannoukos, I., & Loumos, V. (2009). Early and dynamic student achievement prediction in e-learning courses using neural networks. Journal of the American Society for Information Science and Technology, 60(2), 372–380. https://doi.org/10.1002/asi.20970
  • James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning, vol. 112. Springer.
  • Jarvela, S., & Hakkinen, P. (2003). The levels of web-based discussions: Using perspective-taking theory as an analytical tool. Cognition in a Digital World, 77–95.
  • Jayaprakash, S. M., Moody, E. W., Lauría, E. J. M., Regan, J. R., & Baron, J. D. (2014). Early alert of academically at-risk students: An open source analytics initiative. Journal of Learning Analytics, 1(1), 6–47. https://doi.org/10.18608/jla.2014.11.3
  • Jia, P., & Maloney, T. (2015). Using predictive modelling to identify students at risk of poor university outcomes. Higher Education, 70(1), 127–149. https://doi.org/10.1007/s10734-014-9829-7
  • Jin, Q., & Lafayette, W. (2011, June 26–29). A multi-outcome hybrid model for predicting student success in engineering. 2011 Annual Conference Exposition.
  • John, G. H., & Langley, P. (1995, August 18–20). Estimating continuous distributions in bayesian classifiers. Eleventh Conference on Uncertainty in Artificial Intelligence, San Mateo: Morgan Kaufmann, 338–345.
  • Junco, R. (2012). Too much face and not enough books: The relationship between multiple indices of facebook use and academic performance. Computers in Human Behavior, 28(1), 187–198. https://doi.org/10.1016/j.chb.2011.08.026
  • Junco, R. (2014). Ispy: Seeing what students really do online. Learning, Media and Technology, 39(1), 75–89. https://doi.org/10.1080/17439884.2013.771782
  • Kotsiantis, S. B. (2012). Use of machine learning techniques for educational proposes: A decision support system for forecasting students’ grades. Artificial Intelligence Review, 37(4), 331–344. https://doi.org/10.1007/s10462-011-9234-x
  • Kotsiantis, S., Pierrakeas, C., & Pintelas, P. (2004). Predicting students’ performance in distance learning using machine learning techniques. Applied Artificial Intelligence, 18(5), 411–426. https://doi.org/10.1080/08839510490442058
  • Laura, W., Jack, W., Helen, M., & Marjorie, T. (2003). Efficacy of using a single, non-technical variable to predict the 41–48.
  • Lopez Guarin, C. E., Guzman, E. L., & Gonzalez, F. A. (2015). A model to predict low academic performance at a specific enrollment using data mining. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 10(3), 119–125. https://doi.org/10.1109/RITA.2015.2452632
  • Macfadyen, L. P., & Dawson, S. (2010). Mining lms data to develop an “early warning system” for educators: A proof of concept. Computers and Education, 54(2), 588–599. https://doi.org/10.1016/j.compedu.2009.09.008
  • Marbouti, F., Diefes-Dux, H. A., & Madhavan, K. (2016). Models for early prediction of at-risk students in a course using standards-based grading. Computers Education, 103, 1–15. https://doi.org/10.1016/j.compedu.2016.09.005
  • Márquez-Vera, C., Cano, A., Romero, C., Noaman, A. Y. M., Mousa Fardoun, H., & Ventura, S. (2016). Early dropout prediction using data mining: A case study with high school students. Expert Systems, 33(1), 107–124. https://doi.org/10.1111/exsy.12135
  • Martin, B. (1995). Instance-based learning: Nearest neighbor with generalization [Master’s thesis, University of Waikato]. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.588.2069
  • Mayilvaganan, M., & Kalpanadevi, D. (2015, July 11–13). Comparison of classification techniques for predicting the performance of students academic environment. 2014 International Conference on Communication and Network Technologies, ICCNT 2014, vol. 2015-March, 113–118.
  • McDonald, S., & Edwards, H. M. (2007). Who should test whom? Communications of the ACM, 50(1), 66–71. https://doi.org/10.1145/1188913.1188919
  • Merceron, A. (2015). Educational data mining/learning analytics: Methods, tasks and current trends. Ceur Workshop Proceedings, 1443(DeLFI), 101–109.
  • Miguéis, V. L., Freitas, A., Garcia, V. P. J., & Silva, A. (2018). Early segmentation of students according to their academic performance: A predictive modelling approach. Decision Support Systems, 115, 36–51. https://doi.org/10.1016/j.dss.2018.09.001
  • Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
  • Mykola Pechenizkiy, E. V. W. v. d. A. P. D. B., & Trcka, N. (2009, July 1–3). Procesš mining online assessment data. Proceedings of the 2nd International Conference on Educational Data Mining, 279–288.
  • Nasir, M., & Masrur, R. (2010). An exploration of emotional intelligence of the students of iiui in relation to gender, age and academic achievement. Bull. Educ. Res, 32(1), 37–51.
  • Nelson, K., Clarke, J., Kift, S., & Creagh, T. (2011). Trends in policies, programs and practices in the Australasian First Year Experience literature 2000–2010 The First Year in Higher Education Research Series on Evidence-based Practice.
  • Nunn, S., Avella, J. T., Kanai, T., & Kebritchi, M. (2016). Learning analytics methods, benefits, and challenges in higher education: A systematic literature review. Online Learning, 20(2), 13–29. https://doi.org/10.24059/olj.v20i2.790
  • OECD. (2019). Education at a Glance 2019. [Online]. Retrieved from: https://www.oecd-ilibrary.org/content/publication/f8d7880d-en
  • Quinlan, R. (1993). C4.5: Programs for machine learning. Morgan Kaufmann Publishers.
  • Romero, C., Espejo, P. G., Zafra, A., Romero, J. R., & Ventura, S. (2013). Web usage mining for predicting final marks of students that use Moodle courses. Computer Applications in Engineering Education, 21(1), 135–146. https://doi.org/10.1002/cae.20456
  • Romero, C., López, M. I., Luna, J. M., & Ventura, S. (2013). Predicting students’ final performance from participation in on-line discussion forums. Computers and Education, 68(October), 458–472. https://doi.org/10.1016/j.compedu.2013.06.009
  • Roy, S. (2002). Nearest neighbor with generalization.
  • Sandoval, A., Gonzalez, C., Alarcon, R., Pichara, K., & Montenegro, M. (2018). Centralized student performance prediction in large courses based on low-cost variables in an institutional context. The Internet and Higher Education, 37, 76–89. https://doi.org/10.1016/j.iheduc.2018.02.002
  • Shum, S. B., & Crick, R. D. (2012, April 29–2 May). Learning dispositions and transferable competencies. Proc. 2nd Int. Conf. Learn. Anal. Knowl. - LAK ‘12, no. May, 92.
  • Swart, J., & Luwes, N. J. (2017, June 21–23). The relationship between demographics and the academic achievement of engineering students. 3rd International Conference on Higher Education Advances.
  • Tair, M. M. A., & El-halees, A. M. (2012). Edm-06: Mining educational data to improve students ‘ performance: A case study. Palestin - Chapter III, 2(2), 140–146.
  • Tempelaar, D. T., Rienties, B., & Giesbers, B. (2015). In search for the most informative data for feedback generation: Learning analytics in a data-rich context. Computers in Human Behavior, 47(6), 157–167. https://doi.org/10.1016/j.chb.2014.05.038
  • Umer, R., Susnjak, T., Mathrani, A., & Suriadi, S. (2018, November 12). A learning analytics approach: Using online weekly student engagement data to make predictions on student performance. 2018 Int. Conf. Comput. Electron. Electr. Eng. (ICE Cube), 1–5.
  • Waddington, R. J., Nam, S., Lonn, S., & Teasley, S. D. (2016). Improving early warning systems with categorized course resource usage. Journal of Learning Analytics, 3(3), 263–290. https://doi.org/10.18608/jla.2016.33.13
  • Wladis, C., Hachey, A. C., & Conway, K. (2014). An investigation of courselevel factors as predictors of online stem course outcomes. Computers and Education, 77, 145–150. https://doi.org/10.1016/j.compedu.2014.04.015
  • Wolff, A., Zdrahal, Z., Nikolov, A., & Pantucek, M. (2013, April 8–12). The open university ‘ s repository of research publications improving retention: predicting at-risk students by analysing clicking behaviour in a virtual learning environment conference item analysing clicking behaviour in a virtual learning. Third Conference on Learning Analytics and Knowledge (LAK 2013).
  • You, J. W. (2016). Identifying significant indicators using lms data to predict course achievement in online learning. The Internet and Higher Education, 29(4), 23–30. https://doi.org/10.1016/j.iheduc.2015.11.003
  • Young, S., & McSporran, M. (2001). Confident men-successful women: Gender differences in online Learning. In EdMedia+ Innovate Learning (pp. 2110–2112). Association for the Advancement of Computing in Education (AACE).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.