696
Views
1
CrossRef citations to date
0
Altmetric
Articles

The effect of after-school extracurricular robotic classes on elementary students’ computational thinking

ORCID Icon, ORCID Icon & ORCID Icon
Pages 3939-3950 | Received 14 Sep 2020, Accepted 18 Jun 2021, Published online: 28 Jun 2021

References

  • Aho, A. V. (2012). Computation and computational thinking. Computer Journal, 55(7), 833–835. https://doi.org/10.1093/comjnl/bxs074
  • Almeida, L. S., Guisande, M. A., Primi, R., & Lemos, G. (2008). Contribuciones del factor general y de los factores específicos en la relación entre inteligencia y rendimiento escolar. European Journal of Education and Psychology, 1(3), 5–16. https://doi.org/10.30552/ejep.v1i3.13.
  • Angeli, C., & Valanides, N. (2020). Developing young children’s computational thinking with educational robotics: An interaction effect between gender and scaffolding strategy. Computers in Human Behavior, 105, 105954. https://doi.org/10.1016/j.chb.2019.03.018
  • Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-6 computational thinking curriculum framework: Implications for teacher knowledge. Journal of Educational Technology & Society, 19(3), 47–57. https://doi.org/10.2307/jeductechsoci.19.3.47
  • Atun, H., & Usta, E. (2019). The effects of programming education planned with TPACK framework on learning outcomes. Participatory Educational Research, 6(2), 26–36. https://doi.org/10.17275/per.19.10.6.2
  • Balanskat, A., & Engelhardt, K. (2015). Computing our future computer programming and coding. Priorities, school curricula and initiatives across Europe. European Schoolnet.
  • Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt, K., Kampylis, P., & Punie, Y. (2016a, June 1–7). Developing Computational thinking : approaches and orientations in K-12 education. Proceedings EdMedia.
  • Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt, K., Kampylis, P., & Punie, Y. (2016b, June). Developing Computational Thinking in compulsory education - implications for policy and practice. Joint Research Centre (JRC), 32. https://doi.org/10.2791/792158.
  • Bocconi, S., Chioccariello, A., & Earp, J. (2018). The nordic approach to introducing computational thinking and programming in compulsory education. Report Prepared for the Nordic@BETT2018 Steering Group, 42. https://doi.org/10.17471/54007
  • Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. Annual American Educational Research Association Meeting, Vancouver, BC, Canada, 1–25.
  • Buitrago Flórez, F., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., & Danies, G. (2017). Changing a generation’s Way of thinking: Teaching computational thinking through programming. Review of Educational Research, 87(4), 834–860. https://doi.org/10.3102/0034654317710096
  • Carbonaro, W., & Maloney, E. (2019). Extracurricular activities and student outcomes in elementary and middle school: Causal effects or self-selection? Socius: Sociological Research for a Dynamic World, 5, 1–17. https://doi.org/10.1177/2378023119845496.
  • Cerda-Etcheoare, G., Flores-Solar, C., & Pérez-Wilson, C. (2010). Inteligencia lógica, rendimiento en matemáticas y factores asociados en estudiantes chilenos de educación básica. Paideia, 48.
  • Cerminati, M. A. (2019). Relaciones entre comprensión lectora, memoria de trabajo e inteligencia fluida en niños de edad escolar. http://200.0.183.210/bitstream/handle/123456789/937/Cerminati-Martinez-Peña.pdf?sequence=1&isAllowed=y
  • Chuderski, A. (2013). When are fluid intelligence and working memory isomorphic and when are they not? Intelligence, 41(4), 244–262. https://doi.org/10.1016/j.intell.2013.04.003
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Academic Press.
  • Cooper, S., Pérez, L. C., & Rainey, D. (2010). K–12 computational learning. Communications of the ACM, 53(11), 27–29. https://doi.org/10.1145/1839676.1839686.
  • Cordero, A., & Calogne, I. (2000). Test breve de inteligencia de Kaufman. TEA.
  • Cormier, D. C., Bulut, O., McGrew, K. S., & Frison, J. (2016). The role of Cattell-Horn-Carroll (CHC) cognitive abilities in predicting writting achievement during the school-age years. Psychology in the Schools, 53(8), 787–803. https://doi.org/10.1002/pits.21945
  • CSTA. (2013). Bugs in the system: Computer science teacher certification in the U.S.
  • Denner, J., Werner, L., Campe, S., & Ortiz, E. (2014). Pair programming: Under what conditions is it advantageous for middle school students? Journal of Research on Technology in Education, 46(3), 277–296. https://doi.org/10.1080/15391523.2014.888272
  • Duncan, C., Bell, T., & Atlas, J. (2017). What do the teachers think? Introducing computational thinking in the primary school curriculum. ACM International Conference Proceeding Series, 65–74. https://doi.org/10.1145/3013499.3013506
  • Durak, H. Y., & Saritepeci, M. (2018). Analysis of the relation between computational thinking skills and various variables with the structural equation model. Computers and Education, 116, 191–202. https://doi.org/10.1016/j.compedu.2017.09.004
  • European Commission. (2018). Communication from the commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on de Digital Education Action Plan -COM/2018/022 final-.
  • Flores, P., & Browne, R. (2017). Jóvenes y patriarcado en la sociedad TIC: Una reflexión desde la violencia simbólica de género en redes sociales. Revista Latinoamericana de Ciencias Sociales, Niñez y Juventud, 15(1), 147–160. https://doi.org/10.11600/1692715x.1510804082016
  • Google. (2015). Searching for computer science: Access and barriers in U.S. K-12 education. https://services.google.com/fh/files/misc/searching-for-computer-science_report.pdf
  • Grover, S., Pea, R., & Cooper, S. (2016). Factors influencing computer science learning in middle school. Proceedings of the 47th ACM Technical Symposium on Computing Science Education – SIGCSE’16, 552–557. https://doi.org/10.1145/2839509.2844564
  • Guzdial, Mark. (2008). Education: Paving the way for computational thinking. Communications of the ACM, 51(8), 25–27. https://doi.org/10.1145/1378704.1378713
  • Haavisto, M. L., & Lehto, J. E. (2005). Fluid/spatial and crystallized intelligence in relation to domain-specific working memory: A latent-variable approach. Learning and Individual Differences, 15(1), 1–21. https://doi.org/10.1016/j.lindif.2004.04.002
  • Hansen, L. B., Macizo, P., Duñabeitia, J. A., Saldaña, D., Carreiras, M., Fuentes, L. J., & Bajo, M. T. (2016). Emergent bilingualism and working memory development in school aged children. Language learning, 66, 51–75. https://doi.org/10.1111/lang.12170
  • Hardy, L., Castles, M., Yeom, S., & Kang, B. H. (2019). Challenges and prospects of a robotics course to supplement Australia’s digital technology curriculum. Proceedings - IEEE 19th International Conference on Advanced Learning Technologies, ICALT 2019, 224–226. https://doi.org/10.1109/ICALT.2019.00074
  • Hasesk, H. I., & Ilic, U. (2019). An investigation of the data collection instruments developed to measure computational thinking. Informatics in Education, 18(2), 297–319. https://doi.org/10.15388/infedu.2019.14
  • Horn, J. L. (1991). Measurement of intellectual capabilities: A review of theory. In K. S. McGrew, J. K. Werder, & R. W. Woodcock (Eds.), Woodcock-Johnson technical manual (pp. 197–232). Riverside.
  • Horn, J. L., & Hofer, S. M. (1992). Major abilities and development in the adult period. In R. J. Sternberg & C. A. Berg (Eds.), . In Intellectual development (pp. 44–99). Cambridge University Press. https://psycnet.apa.org/record/1992-97724-003.
  • Horn, J. L., Noll, J., Flanagan, P. L. H. D. P., & Genshaft, J. L. (1997). Human cognitive capabilities: Gf-Gc theory. In D. P. Flanagan, J. L. Genshaft, & P. L. Harrison (Eds.), Contemporary intellectual assessment: Theories, tests, and issues (pp. 53–91). Guilford Press. http://psycnet.apa.org/record/1997-97010-004
  • Igbokwe, C. O. (2015). Recent curriculum reforms at the Basic education level in Nigeria aimed at catching them young to create change. American Journal of Educational Research, 3(1), 31–37. https://doi.org/10.12691/education-3-1-7
  • INTEF. (2018). Programación, robótica y pensamiento computacional en el aula. Situación en España, enero 2018.
  • Jenson, J., & Droumeva, M. (2016). Exploring media literacy and computational thinking: A game maker curriculum study. Electronic Journal of E-Learning, 14(2), 111–121. https://eric.ed.gov/?id=EJ1101239
  • Jeon, I., & Song, K. S. (2019). The effect of learning analytics system towards learner’s computational thinking capabilities. ACM International Conference Proceeding Series, 12–16. https://doi.org/10.1145/3313991.3314017
  • Kaufman, A. S. (1990). Kaufman brief intelligence test: KBIT. American Guidance Service.
  • Kaufman, A. S., & Wang, J.-J. (1992). Gender, race, and education differences on the K-Bit at ages 4 to 90 years. Journal of Psychoeducational Assessment, 10(3), 219–229. https://doi.org/10.1177/073428299201000302
  • Keyes, K. M., Platt, J., Kaufman, A. S., & McLaughlin, K. A. (2017). Association of fluid intelligence and psychiatric disorders in a population-representative sample of US adolescents. JAMA Psychiatry, 74(2), 179–188. https://doi.org/10.1001/jamapsychiatry.2016.3723
  • Kroes, N., & Vassiliou, A. (2014). Promoting coding skills in Europe is part of the solution to youth unemployment | Shaping Europe’s digital future. https://ec.europa.eu/digital-single-market/en/news/promoting-coding-skills-europe-part-solution-youth-unemployment
  • Kvist, A. V., & Gustafsson, J. E. (2008). The relation between fluid intelligence and the general factor as a function of cultural background: A test of cattell’s investment theory. Intelligence, 36(5), 422–436. https://doi.org/10.1016/j.intell.2007.08.004
  • Léonard, M., Peter, Y., & Secq, Y. (2019). Patterns and loops: Early computational thinking: Vol. LNCS 11722. https://hal.archives-ouvertes.fr/hal-02383097
  • Leviton, A., Dammann, O., Allred, E. N., Joseph, R. M., Fichorova, R. N., O’Shea, T. M., & Kuban, K. C. K. (2018). Neonatal systemic inflammation and the risk of low scores on measures of reading and mathematics achievement at age 10 years among children born extremely preterm. International Journal of Developmental Neuroscience, 66(1), 45–53. https://doi.org/10.1016/j.ijdevneu.2018.01.001
  • Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K-12? Computers in Human Behavior, 41, 51–61. https://doi.org/10.1016/j.chb.2014.09.012
  • Mahoney, J., Larson, R., Eccles, J., Lord, H., Mahoney, J., Larson, R., & Eccles, J. (2005). Organized activities as developmental contexts for children and adolescents. In J. L. Mahoney, R. W. Larson, & J. S. Eccles (Eds.), Organized activities as contexts of development: Extracurricular activities, after-school and community programs (pp. 3–22). Lawrence Erlbaum Associates. https://doi.org/10.4324/9781410612748
  • Manches, A., & Plowman, L. (2017). Computing education in children’s early years: A call for debate. British Journal of Educational Technology, 48(1), 191–201. https://doi.org/10.1111/bjet.12355
  • Martinez, A., Coker, C., McMahon, S. D., Cohen, J., & Thapa, A. (2016). Involvement in extracurricular activities: Identifying differences in perceptions of school climate. Educational and Developmental Psychologist, 33(1), 70–84. https://doi.org/10.1017/edp.2016.7
  • Martínez, Á. M., Martín, A. B. B., Pérez-Esteban, M. D., del Mar, M., Jurado, M., del Carmen Pérez-Fuentes, M., & Linares, J. J. G. (2016). Plasticidad cerebral y aprendizaje a lo largo de toda la vida. In J. J. Gázquez, M. M. Molero, M. C. Pérez-Fuentes, A. B. Barragán, A. Martos, M. D. Pérez-Esteban (Eds). Salud, alimentación y sexualidad en el ciclo vital. Volumen I (pp. 123–129). ASUNIVEP.
  • McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37(1), 1–10. https://doi.org/10.1016/j.intell.2008.08.004
  • Meadows, A. (2015). The impact of oarticipation in extracurricular activities on elementary school students. Journal of Interdisciplinary Graduate Research, 11, 1. doi:10.1093/SF/SOY016
  • Ministerio de Educación y Formación Profesional, & INTEF. (2019). La Escuela de Pensamiento Computacional y su impacto.
  • Morris, E. (2019). Participation in extracurricular activities and academic achievement: A comprehensive review. Masters Theses & Specialist Projects. https://digitalcommons.wku.edu/theses/3097
  • Mouza, C., Marzocchi, A., Pan, Y. C., & Pollock, L. (2016). Development, implementation, and outcomes of an equitable computer science after-school program: Findings from middle-school students. Journal of Research on Technology in Education, 48(2), 84–104. https://doi.org/10.1080/15391523.2016.1146561
  • Noh, J., & Lee, J. (2019). Effects of robotics programming on the computational thinking and creativity of elementary school students. Educational Technology Research and Development, 68(1), 463–484. https://doi.org/10.1007/s11423-019-09708-w
  • Papert, S. (1983). Mindstorms: Children, computers and powerful ideas. In New ideas in psychology. Basic Books (Vol. 1). https://doi.org/10.1016/0732-118X(83)90034-X
  • Pears, A., Dagiene, V., & Jasute, E. (2017). Baltic and nordic K-12 teacher perspectives on computational thinking and computing. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10696 LNCS, 141–152. https://doi.org/10.1007/978-3-319-71483-7_12
  • R Core Team. (2020). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Resnick, M., Silverman, B., Kafai, Y., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E., & Silver, J. (2009). Scratch: programming for all. Communications of the ACM, 52(11), 60–67. https://doi.org/10.1145/1592761.1592779.
  • Ritchie, S. J., Bates, T. C., & Plomin, R. (2015). Does learning to read improve intelligence? A longitudinal multivariate analysis in identical twins from Age 7 to 16. Child Development, 86(1), 23–36. https://doi.org/10.1111/cdev.12272
  • Román-González, M. (2016). Códigoalfabetización y Pensamiento Computacional en Educación Primaria y Secundaria: Validación de un instrumento y evaluación de programas. Universidad Nacional de Educación a Distancia (España). Escuela Internacional de Doctorado. Programa de Doctorado en Educación.
  • Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2017). Which cognitive abilities underlie computational thinking? Criterion validity of the computational thinking test. Computers in Human Behavior, 72, 678–691. https://doi.org/10.1016/j.chb.2016.08.047
  • Roth, B., Becker, N., Romeyke, S., Schäfer, S., Domnick, F., & Spinath, F. M. (2015). Intelligence and school grades: A meta-analysis. Intelligence, 53, 118–137. https://doi.org/10.1016/j.intell.2015.09.002.
  • The Royal Society. (2012, January). Shut down or restart? The way forward for computing in UK schools. Technology, 1–122. https://doi.org/10.1088/2058-7058/25/07/21
  • Sáez-López, J. M., González, M. R., & Cano, E. V. (2016). Visual programming languages integrated across the curriculum in elementary school: A two year case study using “scratch” in five schools. Computers & Education, 97, 129–141. https://doi.org/10.1016/j.compedu.2016.03.003
  • Sentance, S., & Csizmadia, A. (2017). Computing in the curriculum: Challenges and strategies from a teacher’s perspective. Education and Information Technologies, 22(2), 469–495. https://doi.org/10.1007/s10639-016-9482-0
  • Shih, J.-L., Huang, S.-H., Lin, C.-H., & Tseng, C.-C. (2017). STEAMing the ships for the great voyage: Design and evaluation of a technology-integrated maker game. Interaction Design and Architecture, 34, 61–87.
  • Shipstead, Z., Harrison, T. L., & Engle, R. W. (2016). Working Memory capacity and fluid intelligence: Maintenance and disengagement. Perspectives on Psychological Science, 11(6), 771–799. https://doi.org/10.1177/1745691616650647
  • Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research review, 22, 142–158. https://doi.org/10.1016/j.edurev.2017.09.003
  • Sisman, B., Kucuk, S., & Yaman, Y. (2020). The effects of robotics training on children’s spatial ability and attitude toward STEM. International Journal of Social Robotics, 13, 379–389. https://doi.org/10.1007/s12369-020-00646-9.
  • Steinmann, I., Strietholt, R., & Caro, D. (2019). Participation in extracurricular activities and student achievement: Evidence from German all-day schools. School Effectiveness and School Improvement, 30(2), 155–176. https://doi.org/10.1080/09243453.2018.1540435
  • Stevenson, C. E., Bergwerff, C. E., Heiser, W. J., & Resing, W. C. M. (2014). Working Memory and Dynamic measures of analogical reasoning as predictors of children’s math and reading achievement. Infant and Child Development, 23(1), 51–66. https://doi.org/10.1002/icd.1833
  • Swaid, S. I. (2015). Bringing computational thinking to STEM education. Procedia Manufacturing, 3, 3657–3662. https://doi.org/10.1016/j.promfg.2015.07.761
  • Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers and Education, 148, 103798. https://doi.org/10.1016/j.compedu.2019.103798
  • Tran, Y. (2019). Computational thinking equity in elementary classrooms: What third-grade students know and Can Do. Journal of Educational Computing Research, 57(1), 3–31. https://doi.org/10.1177/0735633117743918
  • van Bergen, E., de Jong, P. F., Maassen, B., Krikhaar, E., Plakas, A., & van der Leij, A. (2014). IQ of four-year-olds who go on to develop dyslexia. Journal of Learning Disabilities, 47(5), 475–484. https://doi.org/10.1177/0022219413479673
  • Webber, L. S., & McGillivray, J. A. (1998). An Australian validation of the Kaufman brief intelligence test (K-BIT) with adolescents with An intellectual disability. Australian Psychologist, 33(3), 234–237. https://doi.org/10.1080/00050069808257412
  • Werner, L., Denner, J., & Campe, S. (2014). Children programming games. ACM Transactions on Computing Education, 14(4), 1–22. https://doi.org/10.1145/2677091
  • Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215.
  • Wing, J. M. (2017). Computational thinking’s influence on research and education for all influenza del pensiero computazionale nella ricerca e nell’educazione per tutti. Italian Journal of Educational Technology, 25(2), 7–14. https://doi.org/10.1747/<otherinfo>1/2</otherinfo>499-4324/922
  • Witherspoon, E. B., & Schunn, C. D. (2019). Teachers’ goals predict computational thinking gainsin robotics. Information and Learning Science, 120(5–6), 308–326. https://doi.org/10.1108/ILS-05-2018-0035
  • Zapata-Ros, M. (2015). Pensamiento computacional: Una nueva alfabetización digital. Revista de Educación a Distancia, 46(4), 1–47. https://doi.org/10.6018/red/46/4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.