474
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Generation of Genomic Deletions (of Rig-I GENE) in Goat Primary Cell Culture Using CRISPR/CAS9 Method

, , , & ORCID Icon

References

  • Miller J, Holmes M, Wang J, et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nature Biotech 2007; 25(7):778–785. doi:10.1038/nbt1319.
  • Sander J, Dahlborg E, Goodwin M et al. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nature Method 2011; 8(1):67–69. doi:10.1038/nmeth.1542.
  • Christian M, Cermak T, Doyle E et al. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010; 186(2):757–761. doi:10.1534/genetics.110.120717.
  • Zhang F, Cong L, Lodato S, Kosuri S, Church G, Arlotta P. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nature Biotech 2011; 29(2):149–153. doi:10.1038/nbt.1775.
  • Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science 2010; 327(5962):167–170. doi:10.1126/science.1179555.
  • Makarova K, Haft D, Barrangou R et al. Evolution and classification of the CRISPR–Cas systems. Nature Rev Microbiol 2011; 9(6):467–477. doi:10.1038/nrmicro2577.
  • Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Gen 2011; 45(1):273–297. doi:10.1146/annurev-genet-110410-132430.
  • Cong L, Ran F, Cox D et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339(6121):819–823. doi:10.1126/science.1231143.
  • Mali P, Yang L, Esvelt K et al. RNA-guided human genome engineering via Cas9. Science 2013; 339(6121):823–826. doi:10.1126/science.1232033.
  • Garneau J, Dupuis M, Villion M et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010; 468(7320):67–71. doi:10.1038/nature09523.
  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096):816–821. doi:10.1126/science.1225829.
  • Ni W, Qiao J, Hu S et al. Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS ONE 2014; 9(9):e106718. doi:10.1371/journal.pone.0106718.
  • Chen C, Fenk L, de Bono M. Efficient genome editing in Caenorhabditis elegans by CRISPR-targeted homologous recombination. Nucleic Acid Res 2013; 41(20):e193–e193. doi:10.1093/nar/gkt805.
  • Hwang W, Fu Y, Reyon D et al. Heritable and precise Zebrafish genome editing using a CRISPR-Cas system. PLoS ONE 2013; 8(7):e68708.
  • Wang H, Yang H, Shivalila C et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 2013; 153(4):910–918. doi:10.1016/j.cell.2013.04.025.
  • Hai T, Teng F, Guo R, Li W, Zhou Q. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res 2014; 24(3):372–375.
  • Hongbing H, Yonghe M, Tao W et al. One-step generation of myostatin gene knockout sheep via the CRISPR/Cas9 system. Frontiers Agric Sci Eng 2014; 1(1):2. doi:10.15302/j-fase-2014007.
  • Wang X, Zhou J, Cao C et al. Efficient CRISPR/Cas9-mediated biallelic gene disruption and site-specific knockin after rapid selection of highly active sgRNAs in pigs. Sci Rep 2015; 5(1). doi:10.1038/srep13348.
  • Crispo M, Mulet A, Tesson L et al. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLOS ONE 2015; 10(8):e0136690. doi:10.1371/journal.pone.0136690.
  • Sato M, Miyoshi K, Nagao Y et al. The combinational use of CRISPR/Cas9-based gene editing and targeted toxin technology enables efficient biallelic knockout of the α-1,3-galactosyltransferase gene in porcine embryonic fibroblasts. Xenotransplantation 2014; 21(3):291–300. doi:10.1111/xen.12089.
  • Niu Y, Shen B, Cui Y et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 2014; 156(4):836–843. doi:10.1016/j.cell.2014.01.027.
  • Wang X, Yu H, Lei A et al. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system. Sci Rep 2015; 5(1). doi:10.1038/srep13878.
  • Ran F, Hsu P, Wright J, Agarwala V, Scott D, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nature Protocol 2013; 8(11):2281–2308.
  • Mehrabani D, Tajedini M, Tamadon A et al. Establishment, characterization and cryopreservation of Fars native goat fetal fibroblast cell lines. APJR 2016; 5(3):247–251. doi:10.1016/j.apjr.2016.04.013.
  • Liu C, Guo Y, Guan W, Ma Y, Zhang H, Tang X. Establishment and biological characteristics of Luxi cattle fibroblast bank. Tissue Cell 2008; 40(6):417–424.
  • Wu X, Scott D, Kriz A et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nature Biotech 2014; 32(7):670–676. doi:10.1038/nbt.2889.
  • Fu Y, Foden J, Khayter C et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotech 2013; 31(9):822–826. doi:10.1038/nbt.2623.
  • Doench J, Hartenian E, Graham D et al. Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation. Nature Biotech 2014; 32(12):1262–1267. doi:10.1038/nbt.3026.
  • Zuris J, Thompson D, Shu Y et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nature Biotech 2014; 33(1):73–80. doi:10.1038/nbt.3081.
  • Sakuma T, Nakade S, Sakane Y, Suzuki K, Yamamoto T. MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nature Protocol 2015; 11(1):118–133. doi:10.1038/nprot.2015.140.
  • Liang X, Potter J, Kumar S et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotech 2015; 208:44–53.
  • Mao Z, Bozzella M, Seluanov A, Gorbunova V. Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair 2008; 7(10):1765–1771. doi:10.1016/j.dnarep.2008.06.018.
  • Tabar MS, Hesaraki M, Baharvand H, et al. Evaluating electroporation and lipofectamine approaches for transient and stable transgene expressions in human fibroblasts and embryonic stem cells. Cell J (Yakhteh) 2015; 17(3):438–450.
  • Bauer M, Kristensen BW, Meyer M, et al. Toxic effects of lipid-mediated gene transfer in ventral mesencephalic explant cultures. Basic Clin Pharmacol Toxicol 2006; 98:395–400.
  • Fiszer-Kierzkowska A, Vydra N, Wysocka-Wycisk A et al. Liposome-based DNA carriers may induce cellular stress response and change gene expression pattern in transfected cells. BMC Mol Biol 2011; 12(1):27.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.