277
Views
2
CrossRef citations to date
0
Altmetric
Articles

The expression of miR-129-5p and its target genes in the skin of goats

, , , , & ORCID Icon

References

  • Wu Y. The formation mechanism of mammal coat color and its possible influencing factors. Sichuan J Zool. 2011;30:1003–1007.
  • Hartmeyer M, Scholzen T, Becher E, Bhardwaj RS, Luger T. Human dermal microvascular endothelial cells express the melanocortin receptor type 1 and produce increased levels of IL-8 upon stimulation with α-melanocyte-stimulating hormone. J Immunol. 1997;159:1930–1937.
  • Sturm RA, Teasdale RD, Box NF. Human pigmentation genes: identification, structure and consequences of polymorphic variation. Gene. 2001;277(1–2):49–62.
  • Zhang J, Dong C, Fan R, He X. Advance in pigment melanin of mammalian. Prog Vet Med. 2006;27:65–68.
  • Busc R, Ballotti R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 2000;13(2):60–69.
  • Ohguchi K, Akao Y, Nozawa Y. Stimulation of melanogenesis by the citrus flavonoid naringenin in mouse B16 melanoma cells. Biosci Biotechnol Biochem. 2006;70:1499–1501.
  • Su T-R, Lin J-J, Tsai C-C, et al. Inhibition of melanogenesis by gallic acid: possible involvement of the PI3K/Akt, MEK/ERK and Wnt/β-catenin signaling pathways in B16F10 cells. Int J Mol Sci. 2013;14(10):20443–20458.
  • Southern E, Mir K, Shchepinov M. Molecular interactions on microarrays. Nat Genet. 1999;21(1 Suppl):5–9.
  • Klungland H, Vage DI, Gomez-Raya L, Adalsteinsson S, Lien S. The role of melanocyte-stimulating hormone (MSH) receptor in bovine coat color determination. Mamm Genome. 1995;6(9):636–639.
  • Oetting WS. The tyrosinase gene and oculocutaneous albinism type 1 (OCA1): a model for understanding the molecular biology of melanin formation. Pigment Cell Res. 2000;13(5):320–325.
  • Rouzaud F, Martin J, Gallet PF, et al. A first genotyping assay of French cattle breeds based on a new allele of the extension gene encoding the melanocortin-1 receptor (Mc1r). Genet Sel Evol. 2000;32(5):511–520.
  • Hou L, Pavan WJ. Transcriptional and signaling regulation in neural crest stem cell-derived melanocyte development: do all roads lead to Mitf? Cell Res. 2008;18(12):1163–1176.
  • Yang P, Liu L, Ma L, He C. Situation of research work with respect to melanogenesis—associated MITF gene and its expression. China Surfac Deter Cosmet. 2017;47:46–51.
  • Chen X, Wang R, Liu X, et al. A Chemical-Genetic Approach Reveals The Distinct Roles Of GSK3alpha and GSK3beta in regulating embryonic stem cell fate. Dev Cell. 2017;43(5):563–576.
  • Xing B, Brink LE, Maers K, et al. Conditional depletion of GSK3b protects oligodendrocytes from apoptosis and lessens demyelination in the acute cuprizone model. Glia. 2018;66(9):1999–2012.
  • C. Y. E, Cai Y, Sun BZ, Guan LY, Jiang T. Hepatic insulin-like growth factor receptor is upregulated by activation of the GSK3B-FOXO3 pathway after partial hepatectomy. J Biol Regulat Homeostat Agents. 2017;31(3):549–555.
  • Bellei B, Flori E, Izzo E, Maresca V, Picardo M. GSK3beta inhibition promotes melanogenesis in mouse B16 melanoma cells and normal human melanocytes. Cell Signal . 2008;20(10):1750–1761.
  • Bartel DP. MicroRNAs: genomics,biogenesis, mechanism, and function. Cell. 2004;116(2):281–297.
  • Huang W, Li J, Guo X, Zhao Y, Yuan X. miR-663a inhibits hepatocellular carcinoma cell proliferation and invasion by targeting HMGA2. Biomed Pharmacother. 2016;81:431–438.
  • Ding G, Chen M, Wang Y, et al. MicroRNA-128a-induced apoptosis in HTR-8/SVneo trophoblast cells contributes to pre-eclampsia. Biomed Pharmacother. 2016;81:63–70.
  • Wang X, Xia Y. microRNA-328 inhibits cervical cancer cell proliferation and tumorigenesis by targeting TCF7L2. Biochem Biophys Res Commun. 2016;475(2):169–175.
  • Ling YH, Ren C-H, Guo X-F, et al. Identification and characterization of microRNAs in the ovaries of multiple and uniparous goats (Capra hircus) during follicular phase. BMC Genomics. 2014;15:339.
  • Andreas E, Hoelker M, Neuhoff C, et al. MicroRNA 17-92 cluster regulates proliferation and differentiation of bovine granulosa cells by targeting PTEN and BMPR2 genes. Cell Tissue Res. 2016;366(1):219–230.
  • Dahlmans D, Houzelle A, Schrauwen P, Hoeks J. Mitochondrial dynamics, quality control and miRNA regulation in skeletal muscle: implications for obesity and related metabolic disease. Clin Sci. 2016;130(11):843–852.
  • Butterworth BM. MicroRNAs and the regulation of aldosterone signaling in the kidney. Am J Physiol Cell Physiol. 2015;308(7):C521–C527.
  • Mione M, Bosserhoff A. MicroRNAs in melanocyte and melanoma biology. Pigment Cell Melanoma Res. 2015;28(3):340–354.
  • Wu X, Liu C, Du J, Luo J, Zhu L, Zhang S. Research progress of the role of microRNA in the regulation of animal coat and skin color. Acta Vet Zoo Sinica. 2016;47:1086–1092.
  • Rambow F, Bechadergue A, Saintigny G, Morizot F, Mahé C, Larue L. miR-330-5p targets tyrosinase and induces depigmentation. J Invest Dermatol. 2014;134(11):2846–2849.
  • Qian H, Yang C, Yang Y. MicroRNA-26a inhibits the growth and invasiveness of malignant melanoma and directly targets on MITF gene. Cell Death Discov. 2017;3:17028.
  • Wu L, Fan R, Zeng Q, Hao X, Ren Y. miRNA-338-3p inhibits melanogenesis in alpaca skin melanocytes by targeting MC1R. Chinese J Biochem Mol Biol. 2017;33:624–629.
  • Wang P, Yuanyuan Z, Ruiwen F, Tianzhi C, Changsheng D. MicroRNA-21a-5p functions on the regulation of melanogenesis by targeting Sox5 in mouse skin melanocytes. IJMS. 2016;17(7):959.
  • Jia X, Jin L, Miao L, Ding N, Fan R, Dong C. Melanin synthesis of Alpaca melanocytes regulated by mi R-663 through targeting TGF-β1. Scientia Agricultura Sinica. 2015;48:165–173.
  • Sun W. 2015. Screening and Identification of MicroRNAs Related to Fetal Skin Melanogenesis in Goat. Chongqing, China: Southwest University.
  • Zhang P, Xiao X. Discussion on comprehensive measures to improve survival rate of dazu black goat lamb. Chinese Abst Animal Husb Vet Med. 2018;34:123–165.
  • Zhang J. 2018. Analysis of Genetic Characteristics of F1 Hybrid Generation of Dazu Black Goat and Inner Mongolia Cashmere Goat. Chongqing, China: Southwest University.
  • Qiu Z, Wang X, Shi Y, Da M. miR-129-5p suppresses proliferation, migration, and induces apoptosis in pancreatic cancer cells by targeting PBX3. Acta Biochim Biophys Sin (Shanghai). 2019;51(10):997–1007.
  • Shaker OG, Abdelwahed MY, Ahmed NA, et al. Evaluation of serum long noncoding RNA NEAT and MiR-129-5p in hepatocellular carcinoma. IUBMB Life. 2019;71(10):1571–1578.
  • Chen D, Wang H, Chen J, et al. MicroRNA-129-5p regulates glycolysis and cell proliferation by targeting the glucose transporter SLC2A3 in gastric cancer cells. Front Pharmacol. 2018;9:502.
  • Valenti MT, Deiana M, Cheri S, et al. Physical exercise modulates miR-21-5p, miR-129-5p, miR-378-5p, and miR-188-5p expression in progenitor cells promoting osteogenesis. Cells. 2019;8(7):742.
  • Tian J, Song T, Wang W, Wang H, Zhang Z. miR-129-5p alleviates neuropathic pain through regulating HMGB1 expression in CCI rat models. J Mol Neurosci. 2020(70):84–93.
  • Chen W, Wang H, Dong B, et al. Molecular cloning and expression analysis of tyrosinase gene in the skin of Jining gray goat (Capra hircus). Mol Cell Biochem. 2012;366(1–2):11–20.
  • Gao L, Dong C, Xiaoyan H, et al. Gene expression levels of Alpaca Tyrosinase gene family in individuals of different colors. Chinese J Animal Vet Sci. 2008;39:895–899.
  • Ren H, Wang G, Lu J, et al. The characteristic histomorphology of various skin colors and expression of genes involved in melanogenesis in goats. Chinese J Animal Vet Sci. 2015;46:1525–1531.
  • Regula H, Bianca H, Marlis B, et al. Mutations in MITF and PAX3 cause “splashed white” and other white spotting phenotypes in horses. PLOS Genet. 2012;8:e1002653.
  • Henkel J, Lafayette C, Brooks SA, et al. Whole-genome sequencing reveals a large deletion in the MITF gene in horses with white spotted coat colour and increased risk of deafness. Anim Genet. 2019;50(2):172–174.
  • Ma X, Li H, Chen Y, et al. The transcription factor MITF in RPE function and dysfunction. Prog Retin Eye Res. 2019;73. doi:https://doi.org/10.1016/j.preteyeres.2019.06.002
  • Ai H, Yang B, Li J, Xie X, Chen H, Ren J. Population history and genomic signatures for high-altitude adaptation in Tibetan pigs. BMC Genomics. 2014;15:834.
  • Wei C, Wang H, Liu G, et al. Genome-wide analysis reveals adaptation to high altitudes in Tibetan sheep. Sci Rep. 2016;6:26770.
  • Edea Z, Dadi H, Dessie T, Kim K-S. Genomic signatures of high-altitude adaptation in Ethiopian sheep populations. Genes Genomics. 2019;41(8):973–981.
  • Pielberg Golovko GR, Sundström A, Čurik E, et al. A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse. Nat Genet. 2008;40:1004–1009.
  • Hachiya A, Sriwiriyanont P, Kobayashi T, et al. Stem cell factor-KIT signalling plays a pivotal role in regulating pigmentation in mammalian hair. J Pathol. 2009;218(1):30–39.
  • Kaelin CB, Barsh GS. Genetics of Pigmentation in Dogs and Cats. Annu Rev Anim Biosci. 2013;1:125–156.
  • Hirobe T, Ishikawa A. l-tyrosine induces melanocyte differentiation in novel pink-eyed dilution castaneus mouse mutant showing age-related pigmentation. J Dermatol Sci. 2015;80(3):203–211.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.