281
Views
3
CrossRef citations to date
0
Altmetric
Articles

Association of genetic variability in CD209 gene with bovine paratuberculosis disease: a case–control study in the Indian cattle population

ORCID Icon, , , , , ORCID Icon & ORCID Icon show all

References

  • Minozzi G, Williams JL, Stella A, et al. Meta-analysis of two genome-wide association studies of bovine paratuberculosis. PLoS One. 2012;7(3):e32578.
  • Pieper L, Sorge US, DeVries TJ, Godkin A, Lissemore K, Kelton DF. Evaluation of the Johne’s disease risk assessment and management plan on dairy farms in Ontario. Can J Dairy Sci. 2015;98(10):6792–6800.
  • Lombard JE, Garry FB, McCluskey BJ, Wagner BA. Risk of removal and effects on milk production associated with paratuberculosis status in dairy cows. J Vet Med Educ. 2005;227(12):1975–1981.
  • Whittington RJ, Windsor PA. In utero infection of cattle with Mycobacterium avium subsp. paratuberculosis: a critical review and meta-analysis. Vet J. 2009;179(1):60–69.
  • Chiodini RJ, Chamberlin WM, Sarosiek J, McCallum RW. Crohn's disease and the mycobacterioses: a quarter century later. Causation or simple association? Crit Rev Microbiol. 2012;38(1):52–93.
  • Naser SA, Schwartz D, Shafran I. Isolation of Mycobacterium avium subsp paratuberculosis from breast milk of Crohn's disease patients. Am J Gastroenterol. 2000;95(4):1094–1095.
  • Mishina D, Katsel P, Brown ST, Gilberts ECAM, Greenstein RJ. On the etiology of Crohn disease. Proc Natl Acad Sci USA. 1996;93(18):9816–9820.
  • Vazquez P, Ruı´Z-Larrañaga O, Garrido JM, et al. 2014. Genetic Association Analysis of Paratuberculosis Forms in Holstein-Friesian Cattle. Vet Med Int. 2014.
  • Tripathi BN, Munjal SK, Paliwal OP. An overview of paratuberculosis (Johne’s disease) in animals. Indian J Vet Path. 2002;26:1–10.
  • Whitlock RH, Buergelt C. Preclinical and clinical manifestations of paratuberculosis (including pathology). Vet Clin North Am Food Anim Pract. 1996;12(2):345–356.
  • Bastida F, Juste RA. Paratuberculosis control: a review with a focus on vaccination. J Immune Based Ther Vaccines. 2011;9:8.
  • Nielsen SS, Toft N. Ante mortem diagnosis of paratuberculosis: a review of accuracies of ELISA, interferon-gamma assay and faecal culture techniques. Vet Microbiol. 2008;129(3–4):217–235.
  • Bishop SC, MacKenzie KM. Genetic management strategies for controlling infectious diseases in livestock populations. Genet Sel Evol. 2003;35(Suppl 1):S3.
  • Taylor K. 2004. A Dissertation on genetic analyses of bovine CARD15, a putative disease resistance gene. Texas A&M University.
  • Mortensen H, Nielsen SS, Berg P. Genetic variation and heritability of the antibody response to Mycobacterium avium ssp. paratuberculosis in Danish Holstein cows. J Dairy Sci. 2004;87:108–113.
  • Gonda MG, Chang YM, Shook GE, Collins MT, Kirkpatrick BW. Genetic variation of Mycobacterium avium ssp. paratuberculosis infection in US Holsteins. J Dairy Sci. 2006;89(5):1804–1812.
  • Purdie AC, Plain KM, Begg DJ, de Silva K, Whittington RJ. Candidate gene and genome-wide association studies of Mycobacterium avium subsp. paratuberculosis infection in cattle and sheep: a review. Comp Immunol Microbiol Infect Dis. 2011;34(3):197–208.
  • Gopi B, Singh RV, Kumar S, et al. Single-nucleotide polymorphisms in CLEC7A, CD209 and TLR4 gene and their association with susceptibility to paratuberculosis in Indian cattle. J Genet. 2020;99:14.
  • Kumar S, Kumar S, Singh R, et al. Investigation of genetic association of single nucleotide polymorphisms in SP110 gene with occurrence of paratuberculosis disease in cattle. Int J Livest Res. 2017;7:81–88.
  • Ruiz-Larrañaga O, Garrido JM, Manzano C, et al. Identification of single nucleotide polymorphisms in the bovine solute carrier family 11 member 1 (SLC11A1) gene and their association with infection by Mycobacterium avium subspecies paratuberculosis. J Dairy Sci. 2010;93(4):1713–1721.
  • Sadana T, Singh RV, Singh SV, et al. Single nucleotide polymorphism of SLC11A 1, CARD15, IFNG and TLR2 genes and their association with Mycobacterium avium subspecies paratuberculosis infection in native Indian cattle population. Indian J Biotechnol. 2015;14:469–475.
  • Yadav R, Sharma AK, Singh R, et al. An association study of SNPs with susceptibility to bovine paratuberculosis infection in cattle. Indian J Anim Sci. 2014;84:490–493.
  • Figdor CG, van KY, Adema GJ. C-type lectin receptors on dendritic cells and Langerhans cells. Nat Rev Immunol. 2002;2(2):77–84.
  • Janeway CA, Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20(1):197–216.
  • Koppel EA, van Gisbergen KP, Geijtenbeek TB, van Kooyk Y. Distinct functions of DC-SIGN and its homologues L-SIGN (DC-SIGNR) and mSIGNR1 in pathogen recognition and immune regulation. Cell Microbiol. 2005;7(2):157–165.
  • Palucka K, Banchereau J. How dendritic cells and microbes interact to elicit or subvert protective immune responses. Curr Opin Immunol. 2002;14(4):420–431.
  • Wu L, Kewalramani VN. Dendritic-cell interactions with HIV: infection and viral dissemination. Nat Rev Immunol. 2006;6(11):859–868.
  • Gringhuis SI, den Dunnen J, Litjens M, van Het Hof B, van Kooyk Y, Geijtenbeek TB. C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB. Immunity. 2007;26(5):605–616.
  • Zhou T, Chen Y, Hao L, Zhang Y. DC-SIGN and immunoregulation. Cell Mol Immunol. 2006;3(4):279–283.
  • Kumar S, Kumar S, Singh RV, et al. Association of Bovine CLEC7A gene polymorphism with host susceptibility to paratuberculosis disease in Indian cattle. Res Vet Sci. 2019a;123:216–222.
  • Sambrook J, Russel DW. 2001. Molecular cloning- a laboratory manual. 3rd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  • Kumar S, Kumar S, Singh RV, et al. Genetic association of polymorphisms in bovine TLR2 and TLR4 genes with Mycobacterium avium subspecies paratuberculosis infection in Indian cattle population. Vet Res Commun. 2019b;43(2):105–114.
  • Ruiz-Larrañaga O, Iriondo M, Manzano C. Singlenucleotide polymorphisms in the bovine CD209 candidate gene for susceptibility to infection by Mycobacterium avium subsp. paratuberculosis. Anim Genet. 2012;43:646–647.
  • Vincze T, Posfai J, Roberts RJ. NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Res. 2003;31(13):3688–3691.
  • Taylor K, Taylor J, White S, Womack JE. Identification of genetic variation and putative regulatory regions in bovine CARD15. Mamm Genome. 2006;17(8):892–901.
  • Hinger M, Brandt H, Horner S, Erhardt G. Short communication: association analysis of microsatellites and Mycobacterium avium subspecies paratuberculosis antibody response in German Holsteins. J Dairy Sci. 2007;90(4):1957–1961.
  • Lavers CJ, Barkema HW, Dohoo IR, McKenna SLB, Keefe GP. Evaluation of milk ELISA for detection of Mycobacterium avium subsp. paratuberculosis in dairy herds and association with within-herd prevalence. J Dairy Sci. 2014;97(1):299–309.
  • McKenna SLB, Keefe GP, Barkema HW, Sockett DC. Evaluation of three ELISAs for Mycobacterium avium subsp. paratuberculosis using tissue and fecal culture as comparison standards. Vet Microbiol. 2005;110(1-2):105–111.
  • Dargatz DA, Byrum BA, Barber LK, et al. Evaluation of a commercial ELISA for diagnosis of paratuberculosis in cattle. J Am Vet Med Assoc. 2001;218(7):1163–1166.
  • Pant SD, Verschoor CP, Schenkel FS, You Q, Kelton DF, Karrow NA. Bovine CLEC7A genetic variants and their association with seropositivity in Johne's disease ELISA. Gene. 2014;537(2):302–307.
  • Ruiz-Larrañaga O, VáZquez P, Iriondo M, et al. Evidence for gene-gene epistatic interactions between susceptibility genes for Mycobacterium avium subsp. paratuberculosis infection in cattle. Livest. Sci. 2017;195:63–66.
  • Singh SV, Singh PK, Singh AV, et al. Bio-load and bio-type profiles of Mycobacterium avium subsp. paratuberculosis infection in the domestic livestock population endemic for Johne's disease: a survey of 28 years (1985–2013) in India. Transbound Emerg Dis. 2014;61(s1):43–55.
  • Prakash O, Kumar A, Sonwane A, et al. Polymorphism of cytokine and innate immunity genes associated with bovine brucellosis in cattle. Mol Biol Rep. 2014;41(5):2815–2825.
  • Kumar S. Single nucleotide polymorphism in candidate genes and their association with occurrence of paratuberculosis in cattle [M.V.Sc. thesis]. Bareilly, UP: IVRI (Deemed University); 2015.
  • Loker S, Miglior F, Koeck A, et al. Relationship between body condition score and health traits in first-lactation Canadian Holsteins. J Dairy Sci. 2012;95(11):6770–6780.
  • Koeck A, Miglior F, Kelton DF, Schenkel FS. Genetic association of body condition score with disease resistance in first lactation Canadian Holsteins. Can J Anim Sci. 2012;92(3):285–289.
  • Chang K, Deng S, Lu W, et al. Association between CD209 -336A/G and -871A/G polymorphisms and susceptibility of tuberculosis: a meta-analysis. PLoS One. 2012;7(7):e41519.
  • Wang YT, Hsieh LE, Dai YR, Chueh LL. Polymorphisms in the feline TNFA and CD209 genes are associated with the outcome of feline coronavirus infection. Vet Res. 2014;45(1):123.
  • Martin MP, Lederman MM, Hutcheson HB, et al. Association of DC-SIGN promoter polymorphism with increased risk for parenteral, but not mucosal, acquisition of human immunodeficiency virus type 1 infection. J Virol. 2004;78(24):14053–14056.
  • Barreiro LB, Neyrolles O, Babb CL, et al. Promoter variation in the DC-SIGN-encoding gene CD209 is associated with tuberculosis. PLoS Med. 2006;3(2):e20.
  • Wang L, Chen RF, Liu JW, et al. DC-SIGN (CD209) Promoter -336 A/G polymorphism is associated with dengue hemorrhagic fever and correlated to DC-SIGN expression and immune augmentation. PLoS Negl Trop Dis. 2011;5(1):e934.
  • Kashima S, Rodrigues ES, Azevedo R, et al. DC-SIGN (CD209) gene promoter polymorphisms in a Brazilian population and their association with human T-cell lymphotropic virus type 1 infection. J Gen Virol. 2009;90(Pt 4):927–934.
  • Tassaneetrithep B, Burgess TH, Granelli-Piperno A, et al. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med. 2003;197(7):823–839.
  • Davis CW, Mattei LM, Nguyen HY, Ansarah-Sobrinho C, Doms RW, Pierson TC. The location of asparagine-linked glycans on West Nile virions controls their interactions with CD209 (dendritic cell-specific ICAM-3 grabbing nonintegrin). J Biol Chem. 2006;281(48):37183–37194.
  • Montoya D, Cruz D, Teles RM, et al. Divergence of macrophage phagocytic and antimicrobial programs in leprosy. Cell Host Microbe. 2009;6(4):343–353.
  • Serrano-Gómez D, Domínguez-Soto A, Ancochea J, Jimenez-Heffernan JA, Leal JA, Corbí AL. Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin mediates binding and internalization of Aspergillus fumigatus conidia by dendritic cells and macrophages. J Immunol. 2004;173(9):5635–5643.
  • Bharati J, Dangi SS, Mishra SR, et al. Expression analysis of toll like receptors and interleukins in Tharparkar cattle during acclimation to heat stress exposure. J Therm Biol. 2017;65:48–56.
  • Ferwerda G, Meyer-Wentrup F, Kullberg BJ, Netea MG, Adema GJ. Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages. Cell Microbiol. 2008;10(10):2058–2066.
  • Saitoh T, Komano J, Saitoh Y, et al. Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe. 2012;12(1):109–116.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.