270
Views
2
CrossRef citations to date
0
Altmetric
Articles

Fish tyrosinase enzyme involved in melanin biosynthesis: Insights from physicochemical characterization, homology modeling, and virtual screening studies

, , &

References

  • Fujii R. The regulation of motile activity in fish chromatophores. Pigment Cell Res. 2000;13(5):300–319.
  • Colihueque N. Genetics of salmonid skin pigmentation: Clues and prospects for improving the external appearance of farmed salmonids. Rev Fish Biol Fisheries. 2010;20(1):71–86. doi:10.1007/s11160-009-9121-6
  • Goud TS, Upadhyay RC, Onteru SK, Pichili VBR, Chadipiralla K. Identification and sequence characterization of melanocortin 1 receptor gene (MC1R) in Bos indicus versus (Bos taurus X Bos indicus). Anim Biotechnol. 2020;31(4):283–294.
  • Wang N, Hebert DN. Tyrosinase maturation through the mammalian secretory pathway: Bringing color to life. Pigment Cell Res. 2006;19(1):3–18.
  • Stewart JRR, Thompson MBB, Attaway MBB, Herbert JFF, Murphy CRR. Uptake of dextran-FITC by epithelial cells of the chorioallantoic placentome and the omphalopleure of the placentotrophic lizard, Pseudemoia entrecasteauxii. J Exp Zool A Comp Exp Biol. 2006;305 (10):883–889.
  • Sen Gupta PS, Mondal B, Kumar BA. In silico characterization of human tyrosinase using computational tools and servers. Int J Pharm Bio Sci. 2013;4(2):659–663.
  • Das P. In silico structural analysis, physicochemical characterization and homology modeling of Arabidopsis thaliana Na+/H + Exchanger 2 (atnhx2) protein. 2017.
  • Ashraf Z, Rafiq M, Seo SY, Babar MM, Zaidi NUSS. Synthesis, kinetic mechanism and docking studies of vanillin derivatives as inhibitors of mushroom tyrosinase. Bioorg Med Chem. 2015;23(17):5870–5880.
  • Pillaiyar T, Namasivayam V, Manickam M, Jung SH. Inhibitors of melanogenesis: an updated review. J Med Chem. 2018;61(17):7395–7418.
  • Cozzone AJ. Proteins: fundamental chemical properties. Encycl Life Sci. 2002;1–10.
  • Orlow SJ, Zhou B. k, Chakraborty AK, Drucker M, Pifko-Hirst S, Pawelek JM. High-molecular-weight forms of tyrosinase and the tyrosinase-related proteins: evidence for a melanogenic complex. J Invest Dermatol. 1994;103(2):196–201.
  • Gill SC, von Hippel PH. Calculation of protein extinction coefficients from amino acid sequence data [published erratum appears in Anal Biochem 1990 Sep;189(2):283]. Anal Biochem. 1989;182(2):319–326.
  • Guruprasad K, Reddy BVB, Pandit MW. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng. 1990;4(2):155–161.
  • Ikai A. Thermostability and aliphatic index of globular proteins. J Biochem. 1980;1898:1895–1898. doi:10.1093/oxfordjournals.jbchem.a133168
  • Curran AR, Engelman DM. Sequence motifs, polar interactions and conformational changes in helical membrane proteins. Curr Opin Struct Biol. 2003;13(4):412–417. doi:10.1016/S0959-440X(03)00102-7
  • Adamian L, Liang J. Interhelical hydrogen bonds and spatial motifs in membrane proteins: Polar clamps and serine zippers. Proteins Struct Funct Genet. 2002;47(2):209–218.
  • Senes A, Ubarretxena-Belandia I, Engelman DM. The Calpha- H···O hydrogen bond: a determinant of stability and specificity in transmembrane helix interactions. Proc Natl Acad Sci U S A. 2001;98(16):9056–9061.
  • Elbashir MK, Wang J, Wu FX, Wang L. Predicting beta-turns in proteins using support vector machines with fractional polynomials. Proteome Sci. 2013;11(Suppl 1):S5–S10. doi:10.1186/1477-5956-11-S1-S5.
  • Petersen B, Lundegaard C, Petersen TN. NetTurnP - neural network prediction of beta-turns by use of evolutionary information and predicted protein sequence features. PLoS One. 2010;5(11):e15079. doi:10.1371/journal.pone.0015079
  • Creighton TE. Disulphide bonds and protein stability. Bioessays. 1988;8(2):57–63.
  • Pace CN, Grimsley GR, Thomson JA, Barnett BJ. Conformational stability and activity of ribonuclease T1 with zero, one, and two intact disulfide bonds. J Biol Chem. 1988;263(24):11820–11825.
  • Thornton JM. Disulphide bridges in globular proteins. J Mol Biol. 1981;151(2):261–287.
  • Xiang Z. Advances in homology protein structure modeling. Curr Protein Pept Sci. 2006;7(3):217–227.
  • Yang Z, Lasker K, Schneidman-Duhovny D, et al. UCSF Chimera, MODELLER, and IMP: an integrated modeling system. J Struct Biol. 2012;179(3):269–278.
  • Biasini M, Bienert S, Waterhouse A, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014;42(W1):252–258.
  • Khobragade CN, Beedkar SD, Bodade RG, Vinchurkar AS. Comparative structural modeling and docking studies of oxalate oxidase: possible implication in enzyme supplementation therapy for urolithiasis. Int J Biol Macromol. 2011;48(3):466–473.
  • Padmavathi GV, Natraj Sekhar P, Kavi Kishor PB, Vishal Kumar Shah A, Saralakumari D. Homology modeling and docking studies of human G-Protein coupled receptor involved in taste perception. Int J Integr Biol. 2008;2(1):15–26.
  • Kopp J, Schwede T. Automated protein structure homology modeling: a progress report. Pharmacogenomics. 2004;5(4):405–416. doi:10.1517/14622416.5.4.405
  • García-Borrón JC, Solano F. Molecular anatomy of tyrosinase and its related proteins: beyond the histidine-bound metal catalytic center. Pigment Cell Res. 2002;15(3):162–173.
  • Singh P, Pandey KM. Structural modeling of human tyrosinase protein using computational methods. Biotech. Res. J. 2016;2(1):15–24.
  • Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M. Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J Biol Chem. 2006;281(13):8981–8990.
  • Ripphausen P, Nisius B, Peltason L, Bajorath J. Quo vadis, virtual screening? A comprehensive survey of prospective applications. J Med Chem. 2010;53(24):8461–8467.
  • Lyne PD. Structure-based virtual screening: an overview. Drug Discov Today. 2002;7(20):1047–1055. doi:10.1016/S1359-6446(02)02483-2
  • Adeniji SE, Uba S, Uzairu A. In silico study for evaluating the binding mode and interaction of 1, 2, 4-triazole and its derivatives as potent inhibitors against Lipoate protein B (LipB). J King Saud Univ - Sci. 2020;32(1):475–485. doi:10.1016/j.jksus.2018.07.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.