397
Views
0
CrossRef citations to date
0
Altmetric
Reviews

The role of L-carnitine in bovine embryo metabolism. A review of the effect of supplementation with a metabolic modulator on in vitro embryo production

ORCID Icon, &

References

  • Sirard M-A, Richard F, Blondin P, Robert C. Contribution of the oocyte to embryo quality. Theriogenology. 2006;65(1):126–136.
  • Graf A, Krebs S, Heininen-Brown M, Zakhartchenko V, Blum H, Wolf E. Genome activation in bovine embryos: review of the literature and new insights from RNA sequencing experiments. Anim Reprod Sci. 2014;149(1–2):46–58.
  • Graf A, Krebs S, Zakhartchenko V, Schwalb B, Blum H, Wolf E. Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc Natl Acad Sci USA. 2014;111(11):4139–4144.
  • de Souza DK, Salles LP, Rosa e Silva AAM. Aspects of energetic substrate metabolism of in vitro and in vivo bovine embryos. Braz J Med Biol Res. 2015;48(3):191–197.
  • Camargo O, Ruiz T, Olivera M. Modelo teórico para explicar la acumulación de gotas lipídicas en embriones bovinos machos o hembras producidos in vitro. Acta Biológica Colombiana. 2008;13(2):89–102.
  • Khurana NK, Niemann H. Energy metabolism in preimplantation bovine embryos derived in vitro or in vivo. Biol Reprod. 2000;62(4):847–856.
  • Swain JE, Bormann CL, Clark SG, Walters EM, Wheeler MB, Krisher RL. Use of energy substrates by various stage preimplantation pig embryos produced in vivo and in vitro. Reproduction. 2002;123(2):253–260.
  • Sutton-McDowall ML, Feil D, Robker RL, Thompson JG, Dunning KR. Utilization of endogenous fatty acid stores for energy production in bovine preimplantation embryos. Theriogenology. 2012 May;77(8):1632–1641.
  • Mishra A, Reddy I, Gupta P, Mondal S. Developmental regulation and modulation of apoptotic genes expression in sheep oocytes and embryos cultured in vitro with L-carnitine. Reprod Dom Anim. 2016;51(6):1020–1029.
  • McKeegan PJ. Metabolic regulation during early embryo development [dissertation]. York, UK: University of York; 2015.
  • Dunning KR, Cashman K, Russell DL, Thompson JG, Norman RJ, Robker RL. Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol Reprod. 2010;83(6):909–918.
  • Uhde K, van Tol HTA, Stout TAE, Roelen BAJ. Metabolomic profiles of bovine cumulus cells and cumulus-oocyte-complex-conditioned medium during maturation in vitro. Sci Rep. 2018;8(1):9477.
  • McKeegan PJ, Sturmey RG. The role of fatty acids in oocyte and early embryo development. Reprod Fertil Dev. 2011;24(1):59–67.
  • Vaz Fréderic M, Wanders RJA. Carnitine biosynthesis in mammals. Biochem J. 2002;361(3):417–429.
  • Fillmore N, Abo AO, Lopaschuk GD, Fatty Acid Beta-Oxidation. Urbana, IL: AOCS; 2011.
  • Hashimoto S, Yamanaka M, Yamochi T, et al. Mitochondrial function in immature bovine oocytes is improved by an increase of cellular cyclic AMP. Sci Rep. 2019;9(1):5167.
  • Carrillo-Gonzalez DF, Rodríguez-Osorio N, Long CR, Vásquez-Araque NA, Maldonado-Estrada JG. Effect of L-carnitine supplementation during in vitro maturation and in vitro culture on oocyte quality and embryonic development rate of bovines. Asian Pac J Reprod. 2019;8(6):289.
  • Prates EG, Nunes JT, Pereira RM. A role of lipid metabolism during cumulus-oocyte complex maturation: impact of lipid modulators to improve embryo production. Mediators Inflammation. 2014;2014:1–11.
  • Warzych E, Pawlak P, Pszczola M, Cieslak A, Madeja ZE, Lechniak D. Interactions of bovine oocytes with follicular elements with respect to lipid metabolism. Anim Sci J. 2017;88(10):1491–1497.
  • Marteil G, Richard-Parpaillon L, Kubiak JZ. Role of oocyte quality in meiotic maturation and embryonic development. Reprod Biol. 2009;9(3):203–224.
  • Carrillo-González DF, Rodríguez-Osorio N, Long CR, Vásquez-Araque NA, Maldonado-Estrada JG. l-carnitine supplementation during in vitro maturation and in vitro culture does not affect the survival rates after vitrification and warming but alters inf-T and ptgs2 gene expression. Int J Mol Sci. 2020;21(16):5601.
  • Sprícigo JF, Morató R, Arcarons N, et al. Assessment of the effect of adding L-carnitine and/or resveratrol to maturation medium before vitrification on in vitro-matured calf oocytes. Theriogenology. 2017;89:47–57.
  • Phongnimitr T, Liang Y, Srirattana K, et al. Effect of L-carnitine on maturation, cryo-tolerance and embryo developmental competence of bovine oocytes. Anim Sci J. 2013;84(11):719–725.
  • Ghanem N, Salilew-Wondim D, Gad A, et al. Bovine blastocysts with developmental competence to term share similar expression of developmentally important genes although derived from different culture environments. Reproduction. 2011;142(4):551–564.
  • Hwang I-S, Hochi S. Recent progress in cryopreservation of bovine oocytes. BioMed Res Int. 2014;2014:1–11.
  • Ghanem N. L-carnitine improved bovine blastocyst rate and quality when supplemented at different preimplantation stages. Egyptian J Anim Prod. 2015;52(2):82–89.
  • Chankitisakul V, Somfai T, Inaba Y, Techakumphu M, Nagai T. Supplementation of maturation medium with L-carnitine improves cryo-tolerance of bovine in vitro matured oocytes. Theriogenology. 2013;79(4):590–598.
  • Takahashi T, Inaba Y, Somfai T, et al. supplementation of culture medium with L-carnitine improves development and cryotolerance of bovine embryos produced in vitro. Reprod Fertil Dev. 2013;25(4):589–599.
  • Dias LRO, Leme LO, Sprícigo JFW, Pivato I, Dode MAN. Effect of delipidant agents during in vitro culture on the development, lipid content, gene expression and cryotolerance of bovine embryos. Reprod Dom Anim. 2020;55(1):11–20.
  • Held-Hoelker E, Klein SL, Rings F, et al. Cryosurvival of in vitro produced bovine embryos supplemented with l-Carnitine and concurrent reduction of fatty acids. Theriogenology. 2017;96:145–152.
  • Zolini AM, Carrascal-Triana E, Ruiz de King A, Hansen PJ, Alves Torres CA, Block J. Effect of addition of l-carnitine to media for oocyte maturation and embryo culture on development and cryotolerance of bovine embryos produced in vitro. Theriogenology. 2019;133:135–143.
  • Knitlova D, Hulinska P, Jeseta M, Hanzalova K, Kempisty B, Machatkova M. Supplementation of l-carnitine during in vitro maturation improves embryo development from less competent bovine oocytes. Theriogenology. 2017;102:16–22.
  • Ghanem N, Ha A-N, Fakruzzaman M, Bang J-I, Lee S-C, Kong I-K. Differential expression of selected candidate genes in bovine embryos produced in vitro and cultured with chemicals modulating lipid metabolism. Theriogenology. 2014;82(2):238–250.
  • Carrillo-González DF, Maldonado-Estrada JG. L-carnitine supplementation in culture media improves the pregnancy rate of in vitro produced embryos with sexed semen from Bos taurus indicus cows. Trop Anim Health Prod. 2020;52(5):2559–2565.
  • Jiang WJ, Yao XR, Zhao YH, et al. L-carnitine prevents bovine oocyte aging and promotes subsequent embryonic development. J Reprod Dev. 2019;65(6):499–506.
  • Jiang W, Li Y, Zhao Y, et al. l-carnitine supplementation during in vitro culture regulates oxidative stress in embryos from bovine aged oocytes. Theriogenology. 2020;143:64–73.
  • Sovernigo TC, Adona PR, Monzani PS, et al. Effects of supplementation of medium with different antioxidants during in vitro maturation of bovine oocytes on subsequent embryo production. Reprod Dom Anim. 2017;52(4):561–569.
  • Wrenzycki C, Herrmann D, Niemann H. Messenger RNA in oocytes and embryos in relation to embryo viability. Theriogenology. 2007;68:S77–S83.
  • Ferreira EM, Vireque AA, Adona PR, Meirelles FV, Ferriani RA, Navarro PAAS. Cytoplasmic maturation of bovine oocytes: structural and biochemical modifications and acquisition of developmental competence. Theriogenology. 2009;71(5):836–848.
  • Ghanem N. L-carnitine improved bovine blastocyst rate and quality when supplemented at different preimplantation stages. Egyptian J Anim Prod. 2015;52(2):29–99.
  • Baldoceda L, Gagné D, Ferreira CR, Robert C. Genetic influence on the reduction in bovine embryo lipid content by L-carnitine. Reprod Fertil Dev. 2016;28(8):1172.
  • Longo N, Frigeni M, Pasquali M. Carnitine transport and fatty acid oxidation. Biochim Biophys Acta. 2016;1863(10):2422–2435.
  • Kobayashi A, Kang M-I, Okawa H, et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-Based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol. 2004;24(16):7130–7139.
  • Walther TC, Chung J, Jr RVF. Lipid droplet biogenesis. Annu Rev Cell Dev Biol. 2017;33:491–510.
  • Yen C-LE, Stone SJ, Koliwad S, Harris C, Farese RV. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res. 2008;49(11):2283–2301.
  • Bazer FW, Ying W, Wang X, et al. The many faces of interferon tau. Amino Acids. 2015;47(3):449–460.
  • Mayer AL, Higgins CB, Heitmeier MR, et al. SLC2A8 (GLUT8) is a mammalian trehalose transporter required for trehalose-induced autophagy. Sci Rep. 2016;6(1):38586.
  • Bazer FW, Thatcher WW. Chronicling the discovery of interferon tau. Reproduction. 2017;154(5):F11–F20.
  • Saraiva HFRA, Batista RITP, Alfradique VAP, et al. l-carnitine supplementation during vitrification or warming of in vivo-produced ovine embryos does not affect embryonic survival rates, but alters CrAT and PRDX1 expression. Theriogenology. 2018;105:150–157.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.