163
Views
1
CrossRef citations to date
0
Altmetric
Articles

Identification of microRNA transcriptome throughout the lifespan of yak (Bos grunniens) corpus luteum

ORCID Icon, , , , , & show all

References

  • Bachelot A, Binart N. Corpus luteum development: lessons from genetic models in mice. Curr Top Dev Biol. 2005;68:49–84.
  • Kfir S, Basavaraja R, Wigoda N, Ben-Dor S, Orr I, Meidan R. Genomic profiling of bovine corpus luteum maturation. PLOS One. 2018;13(3):e0194456.
  • Smith MF, McIntush EW, Smith GW. Mechanisms associated with corpus luteum development. J Anim Sci. 1994;72(7):1857–1872.
  • Devoto L, Kohen P, Munoz A, Strauss JF. 3rd. Human corpus luteum physiology and the luteal-phase dysfunction associated with ovarian stimulation. Reprod Biomed Online. 2009;18(Suppl 2):19–24.
  • Devoto L, Henriquez S, Kohen P, Strauss JF. 3rd. The significance of estradiol metabolites in human corpus luteum physiology. Steroids. 2017;123:50–54.
  • Wuttke W, Theiling K, Hinney B, Pitzel L. Regulation of steroid production and its function within the corpus luteum. Steroids. 1998;63(5–6):299–305.
  • Skarzynski DJ, Ferreira-Dias G, Okuda K. Regulation of luteal function and corpus luteum regression in cows: hormonal control, immune mechanisms and intercellular communication. Reprod Domest Anim. 2008;43 Suppl 2:57–65.
  • Niswender GD, Juengel JL, Silva PJ, Rollyson MK, McIntush EW. Mechanisms controlling the function and life span of the corpus luteum. Physiol Rev. 2000;80(1):1–29.
  • Ziecik AJ, Przygrodzka E, Jalali BM, Kaczmarek MM. Regulation of the porcine corpus luteum during pregnancy. Reproduction. 2018;156(3):R57–R67.
  • Magata F, Shirasuna K, Struve K, et al. Gene expressions in the persistent corpus luteum of postpartum dairy cows: distinct profiles from the corpora lutea of the estrous cycle and pregnancy. J Reprod Dev. 2012;58(4):445–452.
  • Stocco C, Telleria C, Gibori G. The molecular control of corpus luteum formation, function, and regression. Endocr Rev. 2007;28(1):117–149.
  • Curlewis JD, Tam SP, Lau P, et al. A prostaglandin f(2alpha) analog induces suppressors of cytokine signaling-3 expression in the corpus luteum of the pregnant rat: a potential new mechanism in luteolysis. Endocrinology. 2002;143(10):3984–3993.
  • Choi J, Jo M, Lee E, Choi D. The role of autophagy in corpus luteum regression in the rat. Biol Reprod. 2011;85(3):465–472.
  • Jiang YF, Hsu MC, Cheng CH, Tsui KH, Chiu CH. Ultrastructural changes of goat corpus luteum during the estrous cycle. Anim Reprod Sci. 2016;170:38–50.
  • Vishnoi A, Rani S. MiRNA biogenesis and regulation of diseases: an overview. Methods Mol Biol. 2017;1509:1–10.
  • Cai Y, Yu X, Hu S, Yu J. A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics. 2009;7(4):147–154.
  • Hausser J, Syed AP, Bilen B, Zavolan M. Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation. Genome Res. 2013;23(4):604–615.
  • Ivashchenko A, Berillo O, Pyrkova A, Niyazova R. Binding sites of miR-1273 family on the mRNA of target genes. Biomed Res Int. 2014;2014:620530.
  • Otsuka M, Zheng M, Hayashi M, et al. Impaired microRNA processing causes corpus luteum insufficiency and infertility in mice. J Clin Invest. 2008;118(5):1944–1954.
  • Jerome A, Thirumaran SMK, Kala SN. Identification of microRNAs in corpus luteum of pregnancy in buffalo (Bubalus bubalis) by deep sequencing. Iran J Vet Res. 2017;18(4):287–290.
  • Gecaj RM, Schanzenbach CI, Kirchner B, et al. The dynamics of microRNA transcriptome in bovine corpus luteum during its formation, function, and regression. Front Genet. 2017;8:213.
  • Maalouf SW, Liu WS, Albert I, Pate JL. Regulating life or death: potential role of microRNA in rescue of the corpus luteum. Mol Cell Endocrinol. 2014;398(1–2):78–88.
  • Maalouf SW, Smith CL, Pate JL. Changes in microRNA expression during maturation of the bovine corpus luteum: regulation of luteal cell proliferation and function by microRNA-34a. Biol Reprod. 2016;94(3):71.
  • Xu MQ, Jiang H, Zhang LQ, et al. MiR-29b affects the secretion of PROG and promotes the proliferation of bovine corpus luteum cells. PLOS One. 2018;13(4):e0195562.
  • Farberov S, Meidan R. Fibroblast growth factor-2 and transforming growth factor-beta1 oppositely regulate miR-221 that targets thrombospondin-1 in bovine luteal endothelial cells. Biol Reprod. 2018;98(3):366–375.
  • Prakash BS, Sarkar M, Mondal M. An update on reproduction in yak and mithun. Reprod Domest Anim. 2008;43 Suppl 2:217–223.
  • Lan D, Xiong X, Huang C, Mipam TD, Li J. Toward understanding the genetic basis of yak ovary reproduction: a characterization and comparative analyses of estrus ovary transcriptiome in yak and cattle. PLOS One. 2016;11(4):e0152675.
  • Zhang Q, Wang Q, Zhang Y, et al. Comprehensive analysis of microRNA(–)messenger RNA from white yak testis reveals the differentially expressed molecules involved in development and reproduction. Int J Mol Sci. 2018;19(10):3083.
  • Zhao W, Quansah E, Yuan M, et al. Next-generation sequencing analysis reveals segmental patterns of microRNA expression in yak epididymis. Reprod Fertil Dev. 2020;32(12):1067–1083.
  • Xie J, Kalwar Q, Yan P, Guo X. Effect of concentrate supplementation on the expression profile of miRNA in the ovaries of yak during non-breeding season. Animals. 2020;10(9):1640.
  • Yao Y, Niu J, Sizhu S, et al. microRNA-125b regulates apoptosis by targeting bone morphogenetic protein receptor 1B in yak granulosa cells. DNA Cell Biol. 2018;37(11):878–887.
  • Berisha B, Schams D, Rodler D, Sinowatz F, Pfaffl MW. Expression and localization of members of the thrombospondin family during final follicle maturation and corpus luteum formation and function in the bovine ovary. J Reprod Dev. 2016;62(5):501–510.
  • Berisha B, Schams D, Rodler D, Sinowatz F, Pfaffl MW. Expression pattern of HIF1alpha and vasohibins during follicle maturation and corpus luteum function in the bovine ovary. Reprod Dom Anim. 2017;52(1):130–139.
  • Rekawiecki R, Rutkowska J, Kotwica J. Identification of optimal housekeeping genes for examination of gene expression in bovine corpus luteum. Reprod Biol. 2012;12(4):362–367.
  • Gallego Romero I, Pai AA, Tung J, Gilad Y. RNA-seq: impact of RNA degradation on transcript quantification. BMC Biol. 2014;12:42.
  • Ewing B, Hillier L, Wendl MC, Green P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 1998;8(3):175–185.
  • Liu X, Jin DY, McManus MT, Mourelatos Z. Precursor microRNA-programmed silencing complex assembly pathways in mammals. Mol Cell. 2012;46(4):507–517.
  • Altermann E, Klaenhammer TR. PathwayVoyager: pathway mapping using the Kyoto encyclopedia of genes and genomes (KEGG) database. BMC Genomics. 2005;6:60.
  • Reynolds LP, Redmer DA. Growth and development of the corpus luteum. J Reprod Fertil Suppl. 1999;54:181–191.
  • Dai L, Xu J, Liu S, et al. Characterization of miR-126-3p and its target talin2 in the bovine corpus luteum during the oestrus cycle. Reprod Dom Anim. 2014;49(6):913–919.
  • Jin W, Grant JR, Stothard P, Moore SS, Guan LL. Characterization of bovine miRNAs by sequencing and bioinformatics analysis. BMC Mol Biol. 2009;10:90.
  • Zhong T, Hu J, Xiao P, et al. Identification and characterization of microRNAs in the goat (Capra hircus) rumen during embryonic development. Front Genet. 2017;8:163.
  • Shi B, Gao W, Wang J. Sequence fingerprints of microRNA conservation. PLOS One. 2012;7(10):e48256.
  • Mohammed BT, Sontakke SD, Ioannidis J, Duncan WC, Donadeu FX. The adequate corpus luteum: miR-96 promotes luteal cell survival and progesterone production. J Clin Endocrinol Metab. 2017;102(7):2188–2198.
  • Becker S, von Otte S, Robenek H, Diedrich K, Nofer JR. Follicular fluid high-density lipoprotein-associated sphingosine 1-phosphate (S1P) promotes human granulosa lutein cell migration via S1P receptor type 3 and small G-protein RAC1. Biol Reprod. 2011;84(3):604–612.
  • Donadeu FX, Sanchez JM, Mohammed BT, et al. Relationships between size, steroidogenesis and miRNA expression of the bovine corpus luteum. Theriogenology. 2020;145:226–230.
  • Grzesiak M, Michalik A, Rak A, Knapczyk-Stwora K, Pieczonka A. The expression of autophagy-related proteins within the corpus luteum lifespan in pigs. Domest Anim Endocrinol. 2018;64:9–16.
  • Hampl A, Pachernik J, Dvorak P. Levels and interactions of p27, cyclin D3, and CDK4 during the formation and maintenance of the corpus luteum in mice. Biol Reprod. 2000;62(5):1393–1401.
  • Hoffmann B, Busges F, Baumgartner W. Immunohistochemical detection of CD4-, CD8- and MHC II-expressing immune cells and endoglin in the canine corpus luteum at different stages of dioestrus. Reprod Domest Anim. 2004;39(6):391–395.
  • Shirasuna K, Kobayashi A, Nitta A, et al. Possible action of vasohibin-1 as an inhibitor in the regulation of vascularization of the bovine corpus luteum. Reproduction. 2012;143(4):491–500.
  • Wu L, Feng J, Mu Y, et al. O45-regulation of osteoblast differentiation and ECM remodeling by Bmp2/4 in vitro. Bull Group Int Rech Sci Stomatol Odontol. 2011;49(3):94–97.
  • Zorrilla LM, D'Annibale MA, Swing SE, Gadsby JE. Expression of genes associated with apoptosis in the porcine corpus luteum during the oestrous cycle. Reprod Domest Anim. 2013;48(5):755–761.
  • Tsutsui T, Hesabi B, Moons DS, et al. Targeted disruption of CDK4 delays cell cycle entry with enhanced p27(Kip1) activity. Mol Cell Biol. 1999;19(10):7011–7019.
  • Hakkarainen J, Jokela H, Pakarinen P, et al. Hydroxysteroid (17β)-dehydrogenase 1-deficient female mice present with normal puberty onset but are severely subfertile due to a defect in luteinization and progesterone production. Faseb J. 2015;29(9):3806–3816.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.