833
Views
14
CrossRef citations to date
0
Altmetric
Reviews

An updated review on behavior of domestic quail with reference to the negative effect of heat stress

, , , , , , , , & ORCID Icon show all

References

  • Okuyama M. Current status of the Japanese Quail Coturnix japonica as a game bird. J Yamashina Inst Ornithol 2004;35(2):189–202.
  • Angelier F, Chastel O. Stress, prolactin and parental investment in birds: a review. Gen Comp Endocrinol. 2009;163(1–2):142–148.
  • Jatoi AS, Sahota AW, Akram M, et al. Egg quality characteristics as influenced by body size in four close-bred flocks in Japanese quail (Coturnix coturnix japonica). J Animal Plant Sci. 2015;25(4):921–926.
  • Mizutani M. The Japanese Quail. Laboratory Animal Research Station. Yamanashi, Japan: Nippon Institute for Biological Science; 2003:408.
  • Kayang BB, Vignal A, Inoue‐Murayama M, et al. A first-generation microsatellite linkage map of the Japanese quail. Anim Genet. 2004;35(3):195–200. ‏
  • Miller KA, Mench JA. The differential use and effects of four types of environmental enrichment on the activity budgets, fearfulness, and social proximity preference of Japanese quail. Appl Anim Behav Sci. 2005;95(3–4):169–187.
  • Akram M, Hussain J, Ahmad S, et al. Comparative study on production performance, egg geometry, quality and hatching traits in four close-bred stocks of Japanese quail. S J Agric Adv. 2014;3(1):13–18.
  • Ottinger MA. Quail and other short-lived birds. Exp Gerontol. 2001;36(4–6):859–868.‏
  • Minvielle F. What are quail good for in a chicken-focused world? World’s Poult Sci J. 2009;65(4):601–608.
  • Pappas J. “Coturnix japonica.” Animal Diversity Web site. https://animaldiversity.org/accounts/Coturnix_japonica/. Published 2002. Accessed 10 January 2019.
  • Duckworth JW. Recent observations of Galliformes in degraded parts of Laos. G@ Llinformed. 2009;1:18–20. ‏
  • IUCN. Red list of threatened species. IUCN Web site http://www.iucnredlist.org. Published 2013. Accessed July 18, 2015.
  • Geldenhuys G, Hoffman LC, Muller N. Gamebirds: a sustainable feed source in Southern Africa? Food Sec. 2013;5(2):235–249.
  • Jeke A, Phiri C, Chitiindingu K, Taru P. Nutritional compositions of Japanese quail (Coturnix coturnix japonica) breed lines raised on a basal poultry ration under farm conditions in Ruwa. Zimbabwe Cogent Feed & Agric. 2018;4(1):1473009. ‏
  • Abou-Elkhair R, Abdo-Basha H, Abd El-Naby WSH, et al. Effect of a diet supplemented with the Moringa oleifera seed powder on the performance, egg quality, and Gene expression in Japanese laying quail under heat-stress. Animals. 2020;10(5):809. ‏
  • Alagawany M, Farag MR, Abd El-Hack ME, Patra A. Heat stress: effects on productive and reproductive performance of quail. World’s Poult Sci J. 2017;73(4):747–756.
  • Nawab A, Ibtisham F, Li G, et al. Heat stress in poultry production: mitigation strategies to overcome the future challenges facing the global poultry industry. J Therm Biol. 2018;78:131–139.
  • Dosoky WM, Zeweil HS, Ahmed MH, et al. The influences of Tylosine and licorice dietary supplementation in terms of the productive performance, serum parameters, egg yolk lipid profile, antioxidant and immunity status of laying Japanese quail under heat stress condition. J Therm Biol. 2021;99:103015.
  • Cheng KM, Bennet DC, Mills AD. The Japanese quail. In: Hubrecht R, Kirkwood J, eds. The UFAW Handbook on the Care and Management of Laboratory and Other Animals. 8th ed. Hoboken, NJ: Wiley-Blackwell Publishing; 2010:655–674.
  • Biswas A, Ranganatha OS, Mohan J. The effect of different foam concentrations on sperm motility in Japanese quail. Vet Med Int. 2010;2010:1–4. http://dx.doi.org/10.4061/2010/564921.
  • Kim SH, Cheng KM, Ritland C, Ritland K, Silversides FG. Inbreeding in Japanese quail estimated by pedigree and microsatellite analyses. J Hered. 2007;98(4):378–381.
  • Sardà‐Palomera F, Puigcerver M, Brotons L, Rodríguez‐Teijeiro JD. Modelling seasonal changes in the distribution of common quail Coturnix coturnix in farmland landscapes using remote sensing. Ibis. 2012;154(4):703–713. ‏
  • Puigcerver M, Sardà–Palomera F, Rodríguez–Teijeiro JD. Determining population trends and conservation status of the common quail (Coturnix coturnix) in Western Europe. Anim Biodiv Conserv. 2012;35(2):343–352.
  • Randall M, Bolla G. Raising Japanese Quail. Sydney, Australia: Department of Primary Industries; 2008.
  • Abdelfattah E, Karousa M, El-Gendi G. Effect of Some Managerial Factors on Behavior and Performance of Quail: Behavior, Management and Production of Japanese Quail (Coturnix japonica). Latvia, Germany: LAP LAMBERT Academic Publishing; 2012.
  • Holmes DJ, Ottinger MA. Birds as long-lived animal models for the study of aging. Exp Gerontol. 2003;38(11–12):1365–1375.
  • Cornil CA, Ball GF, Balthazart J, Charlier TD. Organizing effects of sex steroids on brain aromatase activity in quail. PLoS One 2011;6(4):e19196.
  • Mench JA, Blatchford RA. 2014. Birds as laboratory animals. In: Bayne K, Turner PV, eds. Laboratory Animal Welfare. 1st ed. San Diego, CA: Academic Press.
  • Alkan S, Karabag K, Galic A, Balcioglu MS. Effects of genotype and egg weight on hatchability traits and hatching weight in Japanese quail. South African J Animal Sci. 2008;38(3):231–237.
  • Mysterud А. Still walking on the wild side? Management actions as steps towards ‘semidomestication’ of hunted ungulates. J Appl Ecol 2010;47(4):920–925.
  • Chang GB, Chang H, Liu XP, et al. Genetic diversity of wild quail in China ascertained with microsatellite DNA markers. Asian Australas J Anim Sci. 2007;20(12):1783–1790.
  • Chang GB, Chang H, Liu XP, et al. Developmental research on the origin and phylogeny of quail. World’s Poult Sci J. 2005;61(1):105–112.
  • Mills AD, Crawford LL, Domjan M, Faure JM. The behavior of the Japanese or domestic quail Coturnix japonica. Neurosci Biobehav Rev. 1997;21(3):261–281.
  • Chang GB, Liu XP, Chang H, et al. Behavior differentiation between wild Japanese quail, domestic quail, and their first filial generation. Poultr Sci. 2009;88(6):1137–1142.
  • Derégnaucourt S, Guyomarch J-C, Belhamra M. Comparison of migratory tendency in European quail (Coturnix c. coturnix), domestic Japanese quail (Coturnix c. japonica) and their hybrids. Ibis 2004;147(1):25–36.
  • Lukanov H, Genchev A. Fattening performance and slaughter traits in male Pharaoh Japanese quail. Bulgarian J Agric Sci. 2018;24(3):476–479.
  • Minvielle F. The future of Japanese quail for research and production. World’s Poult Sci J. 2004;60(4):500–507.
  • Alagawany M, El-Saadony MT, Elnesr SS, et al. Use of lemongrass essential oil as a feed additive in quail’s nutrition: its effect on growth, carcass, blood biochemistry, antioxidant and immunological indices, digestive enzymes and intestinal microbiota. Poultr Sci. 2021;100(6):101172.
  • Baer J, Lansford R, Cheng K. Japanese Quail as a laboratory animal model. In: Fox J, ed. Laboratory Animal Medicine. 3rd ed., Chapter 22. Cambridge, MA: Academic Press. 2015:1087–1108.
  • Huss D, Poynter G, Lansford R. Japanese quail (Coturnix japonica) as a laboratory animal model. Lab Anim. 2008;37(11):513–519.
  • Reda FM, Swelum AA, Hussein EO, Elnesr SS, Alhimaidi AR, Alagawany M. Effects of varying dietary DL-methionine levels on productive and reproductive performance, egg quality, and blood biochemical parameters of quail breeders. Animals. 2020;10(10):1839.‏
  • Lukanov H, Genchev A, Kolev P. Comparative investigation of egg production in WG, GG and GL Japanese quail populations. TJS. 2018;16(4):334–343.
  • Lukanov H, Genchev A, Penchev IV, Penkov D. Meat composition and quality in male Japanese quails from heavy pharaoh line. TJS. 2018;16(4):327–333.
  • Ravindran V. Poultry Feed Availability and Nutrition in Developing Countries. Rome, Italy: Food and Agricultural Organization; 2013:1–4.
  • Cowieson AJ. Factors that affect the nutritional value of maize for broilers. Anim Feed Sci Technol. 2005;119(3–4):293–305.
  • Palic D, Okanovic D, Psodorov D, et al. Prediction of metabolisable energy of poultry feeds by estimating in vitro organic matter digestibility. African J Biotechnol. 2012;11:7313–7317.
  • Kim EJ, Utterback PL, Parsons CM. Comparison of amino acid digestibility coefficients for soybean meal, canola meal, fish meal, and meat and bone meal among 3 different bioassays. Poult Sci. 2012;91(6):1350–1355.
  • Beski SSM, Swick RA, Iji PA. Specialized protein products in broiler chicken nutrition: a review. Anim Nutr. 2015;1(2):47–53.
  • Elnesr SS, Ropy A, Abdel-Razik AH. Effect of dietary sodium butyrate supplementation on growth, blood biochemistry, haematology and histomorphometry of intestine and immune organs of Japanese quail. Animal. 2019;13(6):1234–1244. ‏
  • Elnesr SS, Abdel‐Razik ARH, Elwan HA. Impact of humate substances and Bacillus subtilis PB6 on thyroid activity and histomorphometry, iron profile and blood haematology of quail. J Animal Physiol Animal Nutr. 2021. doi:10.1111/jpn.13543
  • Mahesar SA, Sherazi STH, Kandhro AA, Bhanger MI, Khaskheli AR, Talpur MY. Evaluation of important fatty acid ratios in poultry feed lipids by ATR FTIR spectroscopy. Vib Spectrosc. 2011;57(2):177–181.
  • Magubane MM, Lembede BW, Erlwanger KH, Chivandi E, Donaldson J. Fat absorption and deposition in Japanese quail (Coturnix coturnix japonica) fed a high fat diet. J S Afr Vet Assoc. 2013;84(1):1–7. ‏
  • Reda FM, El-Kholy MS, Abd El-Hack ME, et al. Does the use of different oil sources in quail diets impact their productive and reproductive performance, egg quality, and blood constituents? Poultr Sci. 2020;99(7):3511–3518. ‏
  • Alagawany M, Elnesr SS, Farag MR, et al. Potential role of important nutraceuticals in poultry performance and health - a comprehensive review. Res Vet Sci. 2021;137:9–29. ‏
  • Sahin K, Kucuk O. Zinc supplementation alleviates heat stress in laying Japanese quail. The J Nutr. 2003;133(9):2808–2811.
  • Olgun O, Abdulqader AF, Karabacak A. The importance of nutrition in preventing heat stress at poultry. World’s Poult Sci J. 2021;1–18. doi:10.1080/00439339.2021.1938340‏
  • Mehaisen GM, Ibrahim RM, Desoky AA, Safaa HM, EL-Sayed OA, Abass AO. The importance of propolis in alleviating the negative physiological effects of heat stress in quail chicks. PLoS One. 2017;12(10):e0186907.
  • Demas GE, Cooper MA, Albers HE, Soma KK. Novel mechanisms underlying neuroendocrine regulation of aggression: a synthesis of rodent. avian, and Primate studies. in: Handbook of Neurochemistry and Molecular Neurobiology. Berlin, Germany: Springer; 2006:337–372.
  • Chase ID, Tovey C, Spangler-Martin D, Manfredonia M. Individual differences versus social dynamics in the formation of animal dominance hierarchies. Proc Natl Acad Sci USA. 2002;99(8):5744–5749..
  • Millman ST, Duncan IJ, Widowski TM. Male broiler breeder fowl display high levels of aggression toward females. Poult Sci. 2000;79(9):1233–1241. https://doi.org/10.1093/ps/79.9.1233.
  • Millman ST, Duncan IJ. Effect of male-to-male aggressiveness and feed-restriction during rearing on sexual behavior and aggressiveness towards females by male domestic fowl. Appl Anim Behav Sci 2000;70(1):63–82..
  • Caliva JM, Kembro JM, Pellegrini S, Guzman DAA, Marin RHH. Unexpected results when assessing underlying aggressiveness in Japanese quail using photocastrated stimulus birds. Poult Sci. 2017;96(12):4140–4150. ps/pex258.
  • Adkins-Regan E. Male-male sexual behavior in Japanese quail: being “on top” reduces mating and fertilization with females. Behav Processes. 2014;108:71–79.
  • Jennifer DC, Nancy TB. Female Callipepla quail do respond to male plumage ornamentation. A reply to Parker et al. Anim Behav. 2005;70:e11–e13.
  • Lábaque MC, Kembro JM, Guzmán DA, Nazar FN, Marin RH. Ontogeny of copulatory behaviour in male Japanese quail classified by their T-maze performance as hatchlings. Br Poult Sci. 2008;49(4):409–417.
  • Formanek L, Houdelier C, Lumineau S, Bertin A, Cabanès G, Richard-Yris M-A. Selection of social traits in juvenile Japanese quail affects adults’ behaviour. Appl Anim Behav Sci. 2008;112(1–2):174–186.
  • Charlier TD, Ball GF, Balthazart J. Sexual behavior activates the expression of the immediate early genes c-fos and zenk (egr-1) in catecholaminergic neurons of male Japanese quail. J Neurosci. 2005;131(1):13–30.
  • Cockburn A. Prevalence of different modes of parental care in birds. Proc Biol Sci. 2006;273(1592):1138–1375.
  • Angelier F, Clement-Chastel C, Welcker J, Gabrielsen GW, Chastel O. How does corticosterone affect parental behavior and reproductive success? A study of prolactin in black-legged kittiwakes. Funct Ecol. 2009;23(4):784–793.
  • Wingfield JC, Sapolsky RM. Reproduction and resistance to stress: when and how. J Neuroendocrinol. 2003;15(8):711–724.
  • Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev. 2000;21(1):55–89.
  • Allendorf FW, Leary RF, Spruell P, Wenburg JK. The problems with hybrids: setting conservation guidelines. Trends Ecol Evol. 2001;16(11):613–622. ‏
  • Puigcerver M, Sanchez-Donoso I, Vilà C, Sardà-Palomera F, García-Galea E, Rodríguez-Teijeiro JD. Decreased fitness of restocked hybrid quails prevents fast admixture with wild European quails. Biol Conserv. 2014;171:74–81. ‏
  • Bertechini AG. The quail production CD Paper in Proceedings of the XXIV World’s Poultry Congress, Salvador, Brazil. Worlds Poult Sci J. 2012;68(1):4.
  • Zita L, Ledvinka  , Klesaloval L. The effect of the age of Japanese quails on certain egg quality traits and their relationship. Veterinarski Arhiv. 2013;83(2):223–232.
  • Hauber ME. The Book of Eggs: A Life-Size Guide to the Eggs of Six Hundred of the World’s Bird Species. Chicago, IL: The University Of Chicago Press, 2014:14–17.
  • Moraes TGV, Romao JM, Teixeira RSC, Cardoso WM. Effects of egg position in artificial incubation of Japanese quail (Coturnix japonica). Animal Reprod. 2008;5(1):50–54.
  • Hrncar C, Hasunova E, Hanus A, Bujko J. Effect of genotype in egg quality characteristics in Japanese quail (Coturnix Japonica). Slovak J Animal Science. 2014;47(1):6–11.
  • Holmes DJ, Fluckiger R, Austad S. Comparative biology of aging in birds: an update. Exp Gerontol. 2001;36(4–6):869–883.
  • Doetsch R, Scharff C. Challenges for brain repair: insights from adult neurogenesis in birds and mammals. Brain Behav Evol. 2001;58(5):306–322.
  • Scharff C, Kirn JR, Grossman M, Macklis J, Nottebohm F. Targeted neuronal death affects neuronal replacement and vocal behavior in adult songbirds. Neuron 2000;25(2):481–492.
  • Durant SE, Hopkins WA, Hepp GR, Walters JR. Ecological, evolutionary, and conservation implications of incubation temperature-dependent phenotypes in birds. Biol Rev Camb Philos Soc. 2013;88(2):499–509. ‏
  • Hazlerigg DG, Wagner GC. Seasonal photoperiodism in vertebrates: from coincidence to amplitude. Trends Endocrinol Metab. 2006;17(3):83–91. ‏
  • Dawson A, King VM, Bentley GE, Ball GF. Photoperiodic control of seasonality in birds. J Biol Rhythms. 2001;16(4):365–380. ‏
  • Dawson A. Control of the annual cycle in birds: endocrine constraints and plasticity in response to ecological variability. Philos Trans R Soc Lond B Biol Sci. 2008;363(1497):1621–1633.
  • Nakane Y, Yoshimura T. Deep brain photoreceptors and a seasonal signal transduction cascade in birds. Cell Tissue Res. 2010;342(3):341–344.
  • Busso JM, Dominchin MF, Marin RH, Palme R. Cloacal gland, endocrine testicular, and adrenocortical photoresponsiveness in male Japanese quail exposed to short days. Domest Anim Endocrinal. 2013;44(3):151–156.
  • Dominchin MF, Palme R, Marin RH, Busso JM. Short social interactions in male Japanese Quail fail to influence temporal dynamics of testicular and adrenocortical activities irrespective of photoperiodic reproductive status. J Ornithol. 2017;158(3):785–792.
  • Maggi A, Ciana P, Belcredito S, Vegeto E. Estrogens in the nervous system: mechanisms and nonreproductive functions. Annu Rev Physiol. 2004;66:291–313.
  • Romero LM. Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. Gen Comp Endocrinol. 2002;128(1):1–24. ‏
  • De Bournonville C, Balthazart J, Ball GF, Cornil CA. Non-ovarian aromatization is required to activate female sexual motivation in testosterone-treated ovariectomized quail. Horm Behav. 2016;83:45–59.
  • O’Connell LA, Hofmann HA. Evolution of a vertebrate social decision-making network. Science. 2012;336(6085):1154–1157.
  • Balthazart J, Arnold AP, Adkins- Reagan E, et al. Sexual differentiation of brain and behavior in birds. In: Hormones, Brain and Behavior. Pfaff DW, Joels DW, Auger CJ, eds. Cambridge, MA: Academic Press. 2017:186–224.
  • Balthazart J, Ball GF. Brain Aromatase, Estrogens and Behavior. Oxford, UK: Oxford University Press; 2013.
  • Mccarthy MM. Estradiol and the developing brain. Physiol Rev. 2008;88(1):91–124.
  • Balthazart J, Cornil CA, Charlier TD, Taziaux M, Ball GF. Estradiol, a key endocrine signal in the sexual differentiation and activation of reproductive behavior in quail. J Exp Zool A Ecol Genet Physiol. 2009;311(5):323–345.
  • Remage-Healey L, Heimovics SA, Soma KK, Cornil CA. Rapid effects of estrogens on avian brain and social behavior. In: Hormones, Brain, and Behavior. Pfaff DW, Joëls M, eds. Oxford, UK: Academic Press; 2017:291–303.
  • Balthazart J. Steroid metabolism in the brain: from bird watching to molecular biology, a personal journey. Horm Behav. 2017;93:137–150.
  • Iyilikci O, Balthazart J, Ball GF. Medial preoptic regulation of the ventral tegmental area related to the control of sociosexual behaviors. eNeuro. 2016;3(6):ENEURO.0283-16.2016.
  • De Bournonville C, Dickens MJ, Ball GF, Balthazart J, Cornil CA. Dynamic changes in brain aromatase activity following sexual interactions in males: where, when and why? Psychoneuroendocrinology 2013;38(6):789–799.
  • Bakker J, Brock O. Early oestrogens in shaping reproductive networks: evidence for a potential organizational role of oestradiol in female brain development. J Neuroendocrinol. 2010;22:728–735.
  • Cornil CA. On the role of brain aromatase in females – why are estrogens produced locally when they are available systemically? J Comp Physiol A. 2018;204(1):31–49.
  • Ball GF, Balthazart J. Neuroendocrine regulation of reproductive behavior in birds. In: Hormones, brain, and behavior. Pfaff DW, Joels M, eds. Cambridge, MA: Academic Press. 2017:217–254.
  • Kutsuki T, Hasegawa E. Female preference for both behavior and morphology traits of the male Japanese newt Cynops pyrrhogaster. J Ethol. 2016;34(3):337–342. ‏
  • Hiyama G, Mizushima S, Matsuzaki M, et al. Female Japanese quail visually differentiate testosterone-dependent male attractiveness for mating preferences. Sci Rep. 2018;8(1):1–9.‏
  • Voigt C, Hirschenhauser K, Leitner S. Neural Activation Following Offensive Aggression in Japanese Quail. Seewiesen, Germany: Max Planck Institute for Ornithology; 2020.
  • Strawn SN, Hill EM. Japanese quail (Coturnix japonica) audiogram from 16 Hz to 8 kHz. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2020;206(5):665–670. ‏
  • de Bruijn R, Wright-Lichter JX, Khoshaba E, Holloway F, Lopes PC. Baseline corticosterone is associated with parental care in virgin Japanese quail (Coturnix japonica). Horm Behav. 2020;124(2020):104781.
  • Papini MR, Penagos-Corzo JC, Perez-Acosta AM. Avian emotions: comparative perspectives on fear and frustration. Front Psychol 2019;9:2707.
  • Holmes DJ. Aging in birds. In: Aging of Organisms. Dordrecht, The Netherlands: Springer; 2003:201–219.
  • Rodriguez-Teijeiro JD, Puigcerver M, Gallego S, Cordero PJ, Parkin DT. Pair bonding and multiple paternity in the polygamous common quail (Coturnix coturnix). Ethology. 2003;109(4):291–302.
  • Sato K, Ota K, Kawamoto Y. 1974. Influence of environmental temperature on growth of Japanese quail. In: Scientific Reports of the Faculty of Agriculture. Okayama, Japan: Okayama University.
  • Pardue SL, Thaxton JP, Brake J. Influence of supplemental ascorbic acid on broiler performance following exposure to high environmental temperature. Poult Sci. 1985;64(7):1334–1338.
  • Arjona A, Denbow DM, Weaver WD. Effect of heat stress early in life on mortality of broilers exposed to high environmental temperatures just prior to marketing. Poult Sci. 1988;67(2):226–231.
  • Lott BD, Day EJ, Deaton JW, May JD. The effect of temperature, dietary energy level, and corn particle size on broiler performance. Poult Sci. 1992;71(4):618–624.
  • Onderci M, Sahin K, Sahin N, Cikim G, Vijaya J, Kucuk O. Effects of dietary combination of chromium and biotin on growth performance, carcass characteristics and oxidative stress markers in heat-distressed Japanese quail. Biol Trace Elem Res. 2005;106(2):165–176.
  • Habibian M, Ghazi S, Moeini MM. Effects of dietary selenium and vitamin E on growth performance, meat yield and selenium content and lipid oxidation of breast meat of broilers reared under heat stress. Biol Trace Elem Res. 2016;169(1):142–152.
  • Wasti S, Sah N, Mishra B. Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals. 2020;10(8):1266. ‏
  • Del Vesco AP, Gasparino E, Zancanela V, et al. Effects of selenium supplementation on the oxidative state of acute heat stress-exposed quails. J Anim Physiol Anim Nutr. 2017;101(1):170–179.
  • Sahin K, Onderci M, Sahin N, Gursu MF, Vijaya J, Kucuk O. Effects of dietary combination of chromium and biotin on egg production, serum metabolites and egg yolk mineral and cholesterol concentrations in heat-distressed laying quails. BTER. 2004;101(2):181–192.
  • Sahin N, Sahin K, Onderci M, et al. Chromium picolinate, rather than biotin, alleviates performance and metabolic parameters in heat-stressed quail. Br Poult Sci. 2005;46(4):457–463.
  • Basuony HAM. Effects of Seasonal Variations on Thermoregulation of Ostrich [dissertation]. Cairo, Egypt: Al-Azhar University; 2011. ‏
  • Bobek S, Niegoda J, Pletras M, Kacinska M, Ewy Z. The effect of acute cold and worm ambient temperature on thyroid hormone concentration in blood plasma, blood supply and oxygen consumption in Japanese quail. General Comp Endocrinol. 1980;40:202–210.
  • Shankar BP. Common respiratory diseases of poultry. Veterinary World. 2008;1(7):217–219.
  • Dashe YG, Raji MA, Abdu PA, Oladele BS. Aeromonas hydrophila infections in chickens affected by fowl cholera in Jos Metropolis, Nigeria. Int J Microbiol Immunol Res. 2013;1:32–36.
  • Odugbo MO, Musa U, Ekundayo SO, Okewole PA, Esilonu J. Bordetella avium infection in chickens and quail in Nigeria: preliminary investigations. Vet Res Commun. 2006;30(1):1–5.
  • Casagrande RA, Barth Wouters AT, Wouters F, Pissetti C, De Itapema Cardoso MR, Driemeier D. Fowl Typhoid (Salmonella Gallinarum) Outbreak in Japanese Quail (Coturnix coturnix japonica). Avian Dis. 2014;58(3):491–494.
  • Barde JO, Bale O, Oladele SB, et al. Study of some haematological parameters of Japanese quail. ARRB. 2015;7(4):222–228.
  • Mohapatra N, Kataria JM, Chakraborty S, Dhama K. Egg Drop Syndrome-76 (EDS-76) in Japanese quails (Coturnix coturnix japonica): an experimental study revealing pathology, effect on egg production/quality and immune responses. Pak J Biol Sci. 2014;17(6):821–828.
  • Teixeira M, Teixeira Filho WL, Lopes CWG. Coccidiosis in Japanese quails (Coturnix japonica): characterization of a naturally occurring infection in a commercial rearing farm. Rev Bras Cienc Avic. 2004;6(2):129–134.
  • Helm JD. Common Diseases of Chickens, Turkeys and Gamebirds. Columbia, SC: Clemson Livestock-Poultry Health; 2004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.