159
Views
0
CrossRef citations to date
0
Altmetric
Articles

Determine genetic variations in heat shock factor gene family (HSFs) and study their effect on the functional and structural characterization of protein in Tali goat

, , &

References

  • Ebi K, Campbell-Lendrum D, Wyns A. The 1.5 Health Report; Synthesis on Health & Climate Science in the IPCC SR1.5. Geneva: World Health Organization (WHO); 2018. p. 20.
  • Gupta AK. Origin of agriculture and domestication of animals linked to early Holocene climate amelioration. Curr Sci. 2004;87(1):54–59.
  • Valizadeh R. Sheep and Goat Breeding. Ferdowsi University Printing and Publishing Institute; Mashhad, Iran, 2013. p. 376.
  • Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet. 2005;6(2):95–108.
  • Rebbeck TR, Spitz M, Wu X. Assessing the function of genetic variants in candidate gene association studies. Nat Rev Genet. 2004;5(8):589–597.
  • Ahmad T, Valentovic MA, Rankin GO. Effects of cytochrome P450 single nucleotide polymorphisms on methadone metabolism and pharmacodynamics. Biochem Pharmacol. 2018;153:196–204.
  • Dijk EL, van Auger H, Jaszczyszyn Y, et al. Ten years of next-generation sequencing technology. Trends Genet. 2014;30(9):418–426.
  • Welter D, MacArthur J, Morales J, et al. The NHGRI GWAS catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 2014;42:1001–1006.
  • Wijmenga C, Zhernakova A. The importance of cohort studies in the post-GWAS era. Nat Genet. 2018;50(3):322–328.
  • Lindquist S. The heat-shock response. Annu Rev Biochem. 1986;55(1):1151–1191.
  • Gomez-Pastor R, Burchfiel ET, Thiele DJ. Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Biol. 2018;19(1):4–19.
  • Parker CS, Topol J. A Drosophila RNA polymerase II transcription factor binds to the regulatory site of an hsp 70 gene. Cell. 1984;37(1):273–283.
  • Stephanou A, David SL. Transcriptional modulation of heat shock protein gene expression. Biochem Res Int. 2011;2011(1):1–8.
  • Sandqvist A, Bjork JK, Akerfelt M, et al. Heterotrimerization of heat-shock factors 1 and 2 provides a transcriptional switch in response to distinct stimuli. Mol Biol Cell. 2009;20(5):1340–1347.
  • Östling P, Björk JK, Roos-Mattjus P, et al. Heat shock factor 2 (HSF-2) contributes to inducible expression of HSP genes through interplay with HSF-1. J. Biol. Chem. 2007;282(10):7077–7086.
  • Dong Y, Xie M, Jiang Y, et al. Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nat Biotechnol. 2013;31(2):135–141. Epub 2012 Dec 23. PMID: 23263233.
  • McLaren W, Gil L, Hunt SE, et al. The ensembl variant effect predictor. Genome Biol. 2016;17(1):122.
  • Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinf. 2003;1:2–3.
  • Blom N, Sicheritz-Pontén T, Gupta R, et al. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics. 2004;4(6):1633–1649.
  • Chang CC, Tung CH, Chen CW, et al. SUMOgo: prediction of sumoylation sites on lysines by motif screening models and the effects of various post-translational modifications. Sci Rep. 2018;8(1):15512.
  • Wang L, Du Y, Lu M, et al. ASEB: a web server for KAT-specific acetylation site prediction. Nucleic Acids Res. 2012;40(Web Server issue):W376–W379.
  • Blom N, Gammeltoft S, Brunak S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol. 1999; 294(5):1351–1362.
  • Monigatti F, Gasteiger E, Bairoch A, et al. The Sulfinator: predicting tyrosine sulfation sites in protein sequences. Bioinformatics. 2002;18(5):769–770.
  • DeLano WL. The PyMOL Molecular Graphics System; 2002. http://pymol.org.
  • Wang X, Liu J, Zhou G, et al. Whole-genome sequencing of eight goat populations for the detection of selection signatures underlying production and adaptive traits. Sci Rep. 2016;6:38932.
  • Eck SH, Benet-Pagès A, Flisikowski K, et al. Whole genome sequencing of a single Bos taurus animal for single nucleotide polymorphism discovery. Genome Biol. 2009;10(8):R82.
  • Shardul VL. Expression Analysis of HSF Genes in Buffalo in Different Seasons [doctoral dissertation]. Karnal: National Dairy Research Institute; 2014. Retrieved from http://krishikosh.egranth.ac.in/handle/1/84369.
  • Leslie DM, Schaller GB. Pantholops hodgsonii (Artiodactyla: Bovidae). Mamm Spec. 2008;9(817):1–3.
  • Jaiswal L, De S, Ravi Kant Singh RK, et al. Molecular characterization and protein structure prediction of heat shock transcriptional factors in goat (Capra hircus) and sheep (Ovis aries). Anim Biotechnol. 2020;31(5):432–439.
  • Parmley JL, Hurst LD. Exonic splicing regulatory elements skew synonymous codon usage near intron-exon boundaries in mammals. Mol Biol Evol. 2007;24(8):1600–1603.
  • Stergachis AB, Haugen E, Shafer A, et al. Exonic transcription factor binding directs codon choice and affects protein evolution. Science. 2013;342(6164):1367–1372.
  • Brest P, Lapaquette P, Souidi M, et al. A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn's disease. Nat Genet. 2011;43(3):242–245.
  • Sauna ZE, Kimchi-Sarfaty C. Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet. 2011;12(10):683–691.
  • Dunker AK, Uversky VN. Drugs for ‘protein clouds’: targeting intrinsically disordered transcription factors. Curr Opin Pharmacol. 2010;10(6):782–788.
  • Liu J, Perumal NB, Oldfield CJ, et al. Intrinsic disorder in transcription factors. Biochem. 2006;45(22):6873–6888.
  • Fuxreiter M, Tompa P, Simon I, et al. Malleable machines take shape in eukaryotic transcriptional regulation. Nat Chem Biol. 2008;4(12):728–737.
  • Toth-Petroczy A, Oldfield CJ, Simon I, et al. Malleable machines in transcription regulation: the mediator complex. PLoS Comput Biol. 2008;4(12):e1000243.
  • Dunker AK, Cortese MS, Romero P, et al. Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J. 2005;272(20):5129–5148.
  • Singh GP, Dash D. Intrinsic disorder in yeast transcriptional regulatory network. Proteins. 2007;68(3):602–605.
  • Balazs A, Csizmok V, Buday L, et al. High levels of structural disorder in scaffold proteins as exemplified by a novel neuronal protein, CASK-interactive protein1. Febs J. 2009;276(14):3744–3756.
  • Buday L, Tompa P. Functional classification of scaffold proteins and related molecules. FEBS J. 2010;277(21):4348–4355.
  • Iakoucheva LM, Brown CJ, Lawson JD, et al. Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol. 2002;323(3):573–584.
  • Kovacs D, Rakacs M, Agoston B, et al. Janus chaperones: assistance of both RNA- and protein-folding by ribosomal proteins. FEBS Lett. 2009;583(1):88–92.
  • Uversky VN. Flexible nets of malleable guardians: intrinsically disordered chaperones in neurodegenerative diseases. Chem. Rev. 2011;111(2):1134–66.
  • Radivojac P, Iakoucheva LM, Oldfield CJ, et al. Intrinsic disorder and functional proteomics. Biophys. J. 2007;92(5):1439–5.
  • Dunker AK, Lawson JD, Brown CJ, et al. Intrinsically disordered protein. J Mol Graph Model. 2001;19(1):26–59.
  • Akerfelt M, Morimoto RI, Sistonen L. Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol. 2010;11(8):545–555.
  • Kline MP, Morimoto RI. Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol Cell Biol. 1997;17(4):2107–2115.
  • Sistonen L, Sarge KD, Phillips B, et al. Activation of heat shock factor 2 during hemin-induced differentiation of human erythroleukemia cells. Mol Cell Biol. 1992;12(9):4104–4111.
  • Westerheide SD, Raynes R, Powell C, et al. HSF transcription factor family, heat shock response, and protein intrinsic disorder. Curr Protein Pept Sci. 2012;13(1):86–103.
  • Ahn SG, Liu PC, Klyachko K, et al. The loop domain of heat shock transcription factor 1 dictates DNA-binding specificity and responses to heat stress. Genes Dev. 2001;15(16):2134–2145.
  • Sorger PK, Pelham HR. Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylation. Cell. 1988;54(6):855–864.
  • Holmberg CI, Hietakangas V, Mikhailov A, et al. Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1. EMBO J. 2001;20(14):3800–3810.
  • Xia W, Voellmy R. Hyperphosphorylation of heat shock transcription factor 1 is correlated with transcriptional competence and slow dissociation of active factor trimers. J Biol Chem. 1997;272(7):4094–4102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.