500
Views
3
CrossRef citations to date
0
Altmetric
Articles

Rumen microbial diversity, enteric methane emission and nutrient utilization of crossbred Karan-Fries cattle (Bos taurus) and Murrah buffalo (Bubalus bubalis) consuming varied roughage concentrate ratio

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon

References

  • Wirth R, Kádár G, Kakuk B, et al. The planktonic core microbiome and core functions in the cattle rumen by next generation sequencing. Front Microbiol. 2018;9(2285):2285.
  • Flint HJ. The rumen microbial ecosystem—some recent developments. Trends Microbiol. 1997;5(12):483–488.
  • Tajima K, Aminov RI, Nagamine T, Matsui H, Nakamura M, Benno Y. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl Environ Microbiol. 2001;67(6):2766–2774.
  • Sirohi SK, Singh N, Dagar SS, Puniya AK. Molecular tools for deciphering the microbial community structure and diversity in rumen ecosystem. Appl Microbiol Biotechnol. 2012;95(5):1135–1154.
  • Jami E, Mizrahi I. Composition and similarity of bovine rumen microbiota across individual animals. PloS One. 2012;7(3):e33306.
  • Edwards JE, McEwan NR, Travis AJ, Wallace RJ. 16S rDNA library-based analysis of ruminal bacterial diversity. Antonie Van Leeuwenhoek. 2004;86(3):263–281.
  • Nathani NM, Patel AK, Mootapally CS, et al. Effect of roughage on rumen microbiota composition in the efficient feed converter and sturdy Indian Jaffrabadi buffalo (Bubalus bubalis). BMC Genomics. 2015;16(1):1–15.
  • Jami E, White BA, Mizrahi I. Potential role of the bovine rumen microbiome in modulating milk composition and feed efficiency. PloS One. 2014;9(1):e85423.
  • Brulc JM, Antonopoulos DA, Miller MEB, et al. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci U S A. 2009;106(6):1948–1953.
  • Hess M, Sczyrba A, Egan R, et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science. 2011;331(6016):463–467.
  • Iqbal MW, Zhang Q, Yang Y, et al. Comparative study of rumen fermentation and microbial community differences between water buffalo and Jersey cows under similar feeding conditions. J. Appl. Anim. Res. 2018; 46(1):740–748.
  • Henderson G, Cox F, Ganesh S, Jonker A, Young W, Janssen PH. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 2015; 5(1):1–15.
  • Baca-González V, Asensio-Calavia P, González-Acosta S, Pérez de la Lastra JM, Morales de la Nuez A. Morales de la Nuez A. Are vaccines the solution for methane emissions from ruminants? A systematic review. Vaccines. 2020; 8(3):460.
  • Shabat SKB, Sasson G, Doron-Faigenboim A, et al. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J. 2016;10(12):2958–2972.
  • Beyero N, Kapoor V, Tewatia BS. Effect of different roughage: concentrate ratio on milk yield and its fatty acid profile in dairy cows. J Biol Agric Health. 2015;5:176–185.
  • Dixit S, Keshri A, Vinay VV, Kundu SS. Effect of graded levels of dietary crude protein on nutrient utilization and enteric methane emissions in growing Murrah buffalo calves. IJDS. 2021;74(6):550–553.
  • Wanapat M, Gunun P, Anantasook N, Kang S. Changes of rumen pH, fermentation and microbial population as influenced by different ratios of roughage (rice straw) to concentrate in dairy steers. J Agric Sci. 2014;152(4):675–685.
  • Ellison MJ, Conant GC, Cockrum RR, et al. Diet alters both the structure and taxonomy of the ovine gut microbial ecosystem. DNA Res. 2014;21(2):115–125.
  • Tapio I, Fischer D, Blasco L, Tapio M, Wallace RJ, et al. Taxon abundance, diversity, co-occurrence and network analysis of the ruminal microbiota in response to dietary changes in dairy cows. Plos One. 2017;12(7):e0180260
  • Singh KM, Pandya PR, Tripathi AK, et al. Study of rumen metagenome community using qPCR under different diets. Meta Gene. 2014;2:191–199.
  • Wanapat M, Cherdthong A. Use of real-time PCR technique in studying rumen cellulolytic bacteria population as affected by level of roughage in swamp buffalo. Curr Microbiol. 2009;58(4):294–299.
  • Lee HJ, Jung JY, Oh YK, Lee SS, Madsen EL, Jeon CO. Comparative survey of rumen microbial communities and metabolites across one caprine and three bovine groups, using bar-coded pyrosequencing and 1H nuclear magnetic resonance spectroscopy. Appl Environ Microbiol. 2012;78(17):5983–5993.
  • Wanapat M, Ngarmsang A, Korkhuntot S, et al. A comparative study on the rumen microbial population of cattle and swamp buffalo raised under traditional village conditions in the northeast of Thailand. Asian Australas J Anim Sci. 2000;13(7):918–921.
  • Chanthakhoun V, Wanapat M, Kongmun P, Cherdthong A. Comparison of ruminal fermentation characteristics and microbial population in swamp buffalo and cattle. Livest Sci. 2012;143(2-3):172–176.
  • Singh AK, Chaturvedi VB, Singh P, Kerketta S. Assessment of nutrient utilization capacity of cross bred cattle and buffaloes fed diets containing different ratios of concentrate and roughage. Int J Livest Res. 2018;8:1–265.
  • Sinha SK, Chaturvedi VB, Verma AK, Patil AK, Shivani S. Effect of Feeding Total Mixed Ration on Methane Emission and Energy Metabolism in Crossbred Cattle and Buffaloes. J Ani Res. 2016;6(1):921–926.
  • Niu M, Appuhamy J, Leytem AB, Dungan RS, Kebreab E. Effect of dietary crude protein and forage contents on enteric methane emissions and nitrogen excretion from dairy cows simultaneously. Anim Prod Sci. 2016;56(3):312–321.
  • Calabrò S, Infascelli F, Tudisco R, et al. Estimation of in vitro methane production in buffalo and cow. Buffalo Bull. 2013;32(2):924–927.
  • Della Rosa MM, Jonker A, Waghorn GC. A review of technical variations and protocols used to measure methane emissions from ruminants using respiration chambers, SF6 tracer technique and Green Feed, to facilitate global integration of published data. Anim. Feed Sci. Technol. 2021;279(115018):115018.
  • Moate PJ, Pryce JE, Marett LC, et al. Measurement of enteric methane emissions by the SF6 technique is not affected by ambient weather conditions. Animals. 2021;11(2):528.
  • ICAR. 2013. Nutrient Requirements of Cattle and Buffalo (ICAR-NIANP). 3rd ed. New Delhi: Indian Council of Agriculture Research.
  • AOAC. 2005. Official Methods of Analysis. 18th ed. Arlington, VA: Association of Official Analytical Chemists.
  • Van Soest PJ, Robertson JB, Lewis BA. Symposium: carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. J Dairy Sci. 1991;74(10):3583–3597.
  • NRC. 2001. Nutrient Requirements of Dairy Cattle. 7th revised ed. Washington, DC: National Academy Press.
  • Johnson K, Huyler M, Westberg H, Lamb B, Zimmerman P. Measurement of methane emissions from ruminant livestock using a sulfur hexafluoride tracer technique. Environ Sci Technol. 1994; 28(2):359–3562.
  • Kala A, Kamra DN, Kumar A, Agarwal N, Chaudhary LC, Joshi CG. Impact of levels of total digestible nutrients on microbiome, enzyme profile and degradation of feeds in buffalo rumen. PLoS One. 2017;12(2):e0172051.
  • DeSantis TZ, Hugenholtz P, Larsen N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72(7):5069–5072.
  • Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res. 2016;26(12):1721–1729.
  • Breitwieser FP, Salzberg SL. Pavian  . Interactive analysis of metagenomics data for microbiomics and pathogen identification. BioRxiv. 2016;084715.
  • Oksanen J, Kindt R, Legendre P, et al. The vegan package. Commun Ecol Package. 2007;10(631–637):719.
  • Santra A, Karim SA. Effect of dietary roughage and concentrate ratio on nutrient utilization and performance of ruminant animals. Anim. Nutri. Feed Technol. 2009;9(2):113–135.
  • Chen H, Wang C, Huasai S, Chen A. Effects of dietary forage to concentrate ratio on nutrient digestibility, ruminal fermentation and rumen bacterial composition in Angus cows. Sci Rep. 2021; 11(1):1–11.
  • Lapitan RM, Del Barrio AN, Katsube O, et al. Comparison of fattening performance in Brahman grade cattle (Bos indicus) and crossbred water buffalo (Bubalus bubalis) fed on high roughage diet. Anim Sci J. 2008;79(1):76–82.
  • McSweeney CS, Kennedy PM, John A. Reticulo-ruminal motility in cattle (Bos indicus) and water buffaloes (Bubalus bubalis) fed a low quality roughage diet. Comp Biochem Physiol A Comp Physiol. 1989;94(4):635–638.
  • Anantasook N, Wanapat M, Cherdthong A, Gunun P. Changes of microbial population in the rumen of dairy steers as influenced by plant containing tannins and saponins and roughage to concentrate ratio. Asian-Austral. J. Anim. sci. 2013;26(11):1583.
  • Nampoothiri VM, Mohini M, Malla BA, Mondal G, Pandita S. Growth performance, and enteric and manure greenhouse gas emissions from Murrah calves fed diets with different forage to concentrate ratios. Anim Nutri. 2018; 4(2):215–221.
  • Martinez-Fernandez G, Denman SE, McSweeney CS. Sample processing methods impacts on rumen microbiome. Front Microbiol. 2019;10(861):861.
  • Patra AK. The effect of dietary fats on methane emissions, and its other effects on digestibility, rumen fermentation and lactation performance in cattle: a meta-analysis. Livest Sci. 2013;155(2–3):244–254.
  • Thanh VTK. The effect on intake digestibility and microbial protein production of adding urea to rice straw for cattle and buffalo calves. Livest Sci. 2012;150(1-3):111–113.
  • Kidane A, Øverland M, Mydland LT, Prestløkken E. Interaction between feed use efficiency and level of dietary crude protein on enteric methane emission and apparent nitrogen use efficiency with Norwegian Red dairy cows1. J Anim Sci. 2018;96(9):3967–3982.
  • Wallace RJ, Atasoglu C, Newbold CJ. Role of peptides in rumen microbial metabolism-review. Asian Australas J Anim Sci. 1999;12(1):139–147. 1999
  • Malik PK, Trivedi S, Mohapatra A, Kolte AP, Sejian V, et al. Comparison of enteric methane yield and diversity of ruminal methanogens in cattle and buffaloes fed on the same diet. PLoS One. 2021;16(8):e0256048.
  • Garg MR, Kannan A, Phondba BT, Shelke SK, Sherasia PL. A study on the effect of ration balancing for improving milk production and reducing methane emission in lactating buffaloes under field conditions. Ind. J. Dairy Sci. 2012;65(3):250–255.
  • Bharanidharan R, Arokiyaraj S, Kim EB, Lee CH, Woo YW, et al. Ruminal methane emissions, metabolic, and microbial profile of Holstein steers fed forage and concentrate, separately or as a total mixed ration. PLoS One. 2018;13(8):e0202446.
  • Granja-Salcedo YT, Ribeiro Júnior CS, de Jesus RB, et al. Effect of different levels of concentrate on ruminal microorganisms and rumen fermentation in Nellore steers. Archiv Anim Nutri. 2016;70(1):17–32.
  • Sun HZ, Peng KL, Xue MY, Liu JX. Metagenomics analysis revealed the distinctive ruminal microbiome and resistive profiles in dairy buffaloes. Anim. Microbiome. 2021;3(1):1–13.
  • Li YQ, Xi YM, Wang ZD, Zeng HF, Han Z. Combined signature of rumen microbiome and metabolome in dairy cows with different feed intake levels. J Anim Sci. 2020; 98(3):skaa070.
  • Mao SY, Huo WJ, Zhu WY. Microbiome-metabolome analysis reveals unhealthy alterations in the composition and metabolism of ruminal microbiota with increasing dietary grain in a goat model. Environ Microbiol. 2016;18(2):525–541.
  • McCann JC, Wickersham TA, Loor JJ. High-throughput methods redefine the rumen microbiome and its relationship with nutrition and metabolism. Bioinfo Biol Insights. 2014;8:BBI–S15389.
  • Patel DD, Patel AK, Parmar NR, et al. Microbial and carbohydrate active enzyme profile of buffalo rumen metagenome and their alteration in response to variation in the diet. Gene. 2014;545(1):88–94.
  • Parmar NR, Solanki JV, Patel AB, et al. Metagenome of Mehsani buffalo rumen microbiota: an assessment of variation in feed-dependent phylogenetic and functional classification. J Mol Microbiol Biotechnol. 2014;24(4):249–261.
  • Do TH, Dao TK, Nguyen KHV, et al. Metagenomic analysis of bacterial community structure and diversity of lignocellulolytic bacteria in Vietnamese native goat rumen. Asian-Australas J Anim Sci. 2018;31(5):738–747.
  • Li F, Hitch TC, Chen Y, Creevey CJ, Guan LL. Comparative metagenomic and metatranscriptomic analyses reveal the breed effect on the rumen microbiome, its associations with feed efficiency in beef cattle. Microbiome. 2019;7(1):6–21.
  • Fernando SC, Purvis HT, Najar FZ, et al. Rumen microbial population dynamics during adaptation to a high-grain diet. Appl Environ Microbiol. 2010;76(22):7482–7490.
  • Pandit RJ, Hinsu AT, Patel SH, et al. Microbiota composition, gene pool and its expression in Gir cattle (Bos indicus) rumen under different forage diets using metagenomic and metatranscriptomic approaches. Syst Appl Microbiol. 2018;41(4):374–385.
  • Deusch S, Camarinha-Silva A, Conrad J, Beifuss U, Rodehutscord M, Seifert J. A Structural and functional elucidation of the rumen microbiome influenced by various diets and micro environments. Front Microbiol. 2017;8:1605.
  • Purushe J, Fouts DE, Morrison M, et al. Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: insights into their environmental niche. Microb Ecol. 2010;60(4):721–729.
  • Delgado B, Bach A, Guasch I, et al. Whole rumen metagenome sequencing allows classifying and predicting feed efficiency and intake levels in cattle. Sci Rep. 2019;9(1):1–13.
  • Yanagita K, Manome A, Meng XY, et al. Flow cytometric sorting, phylogenetic analysis and in situ detection of Oscillospira guillermondii, a large, morphologically conspicuous but uncultured ruminal bacterium. Int J Syst Evol Microbiol. 2003;53(Pt 5):1609–1614.
  • Mackie RI, Aminov RI, Hu W, et al. Ecology of uncultivated Oscillospira species in the rumen of cattle, sheep, and reindeer as assessed by microscopy and molecular approaches. Appl Environ Microbiol. 2003;69(11):6808–6815.
  • Kulkerni VD, Pant HC, Rai GS, Rawat JS. The seasonal variation in the concentration of protozoa and Oscillospira guilliermondii organisms in the rumen fluid of grazing buffalo. Indian Vet J. 1971;48(2):137–142.
  • Hinsu AT, Parmar NR, Nathani NM, Pandit RJ, Patel AB, et al. Functional gene profiling through metaRNAseq approach reveals diet-dependent variation in rumen microbiota of buffalo (Bubalus bubalis). Anaerobe. 2017;44:106–116.
  • Myer PR, Smith TP, Wells JE, Kuehn LA, Freetly HC. Rumen microbiome from steers differing in feed efficiency. PloS One. 2015;10(6):e0129174.
  • Bohra V, Dafale NA, Purohit HJ. Understanding the alteration in rumen microbiome and CAZymes profile with diet and host through comparative metagenomic approach. Arch Microbiol. 2019;201(10):1385–1397.
  • Jose VL, Appoothy T, More RP, Arun AS. Metagenomic insights into the rumen microbial fibrolytic enzymes in Indian crossbred cattle fed finger millet straw. AMB Express. 2017;7(1):13–11.
  • Wang Q, Gao X, Yang Y, Zou C, Yang Y, Lin B. A comparative study on rumen ecology of water buffalo and cattle calves under similar feeding regime. Vet Med Sci. 2020;6(4):746–754.
  • Greenwood EC, Torok VA, Hynd PI, Bryden W. Breed and diet influence the ruminal bacterial community of sheep. Anim Prod Sci. 2022;62(5):416–429.
  • Asai K, Lwin KO, Tandang AG, Lapitan RM, Herrera JRV, et al. Comparative analysis of rumen bacteria between water buffalo and cattle fed the same diet during their fattening period in the Philippines. JARQ. 2021;55(1):69–75.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.