173
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The effects of thymol, oxalic acid (Api-Bioxal) and hops extract (Nose-Go) on viability, the Nosema sp. spore load and the expression of vg and sod-1 genes in infected honey bees

, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Glavinic U, Stevanovic J, Ristanic M, et al. Potential of fumagillin and Agaricus blazei mushroom extract to reduce Nosema ceranae in honey bees. Insects. 2021;12(4):282.
  • Higes M, Martín‐Hernández R, Martínez‐Salvador A, et al. A preliminary study of the epidemiological factors related to honey bee colony loss in Spain. Environ Microbiol Rep. 2010;2(2):243–250.
  • Glavinic U, Blagojević J, Ristanić M, et al. Use of Thymol in Nosema ceranae control and health improvement of infected honey bees. Insects. 2022;13(7):574.
  • Simeunovic P, Stevanovic J, Cirkovic D, et al. Nosema ceranae and queen age influence the reproduction and productivity of the honey bee colony. J Apic Res. 2014;53(5):545–554.
  • Mendoza Y, Diaz-Cetti S, Ramallo G, Santos E, Porrini M, Invernizzi C. Nosema ceranae winter control: study of the effectiveness of different fumagillin treatments and consequences on the strength of honey bee (Hymenoptera: Apidae) colonies. J Econ Entomol. 2017;110(1):1–5.
  • van den Heever JP, Thompson TS, Otto SJG, Curtis JM, Ibrahim A, Pernal SF. The effect of dicyclohexylamine and fumagillin on Nosema ceranae-infected honey bee (Apis mellifera) mortality in cage trial assays. Apidologie. 2016;47(5):663–670.
  • Ptaszyńska AA, Załuski D. Extracts from Eleutherococcus senticosus (Rupr. et Maxim.) Maxim. roots: a new hope against honeybee death caused by nosemosis. Molecules. 2020;25(19):4452.
  • Huang WF, Solter LF, Yau PM, Imai BS. Nosema ceranae escapes fumagillin control in honey bees. PLoS Pathog. 2013;9(3):e1003185.
  • Nanetti A, Rodriguez-García C, Meana A, Martín-Hernández R, Higes M. Effect of oxalic acid on Nosema ceranae infection. Res Vet Sci. 2015;102:167–172.
  • Česnik HB, Kmecl V. Investigation on amitraz, coumaphos and thymol concentrations in honey produced by Slovenian beekeepers in 2020. Acta Agric Slov. 2021;117(2):1–7.
  • Rice RN. Nosema Disease in Honeybees: Genetic Variation and Control. Barton, Australia: Australian Government, Rural Industries Research and Development Corporation; 2001. Report n. 01/46.
  • Maistrello L, Lodesani M, Costa C, et al. Screening of natural compounds for the control of nosema disease in honeybees (Apis mellifera). Apidologie. 2008;39(4):436–445.
  • Price KL, Lummis SC. An atypical residue in the pore of Varroa destructor GABA-activated RDL receptors affects picrotoxin block and thymol modulation. Insect Biochem Mol Biol. 2014;55:19–25.
  • Carayon JL, Téné N, Bonnafé E, et al. Thymol as an alternative to pesticides: persistence and effects of Apilife Var on the phototactic behavior of the honeybee Apis mellifera. Environ Sci Pollut Res Int. 2014;21(7):4934–4939.
  • Cilia G, Garrido C, Bonetto M, Tesoriero D, Nanetti A. Effect of Api-Bioxal® and ApiHerb® treatments against Nosema ceranae infection in Apis mellifera investigated by two qPCR methods. Vet Sci. 2020;7(3):125.
  • Gregorc A, Škerl MIS. Toxicological and immunohistochemical testing of honey- bees after oxalic acid and rotenone treatments. Apidologie. 2007;38(3):296–305.
  • Schneider CW, Tautz J, Grünewald B, Fuchs S. RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS One. 2012;7(1):e30023.
  • Bocquet L, Rivière C, Dermont C, et al. Antifungal activity of hop extracts and compounds against the wheat pathogen Zymoseptoria tritici. Ind Crops Prod. 2018;122:290–297. 15
  • Bolton JL, Dunlap TL, Hajirahimkhan A, et al. The multiple biological targets of hops and bioactive compounds. Chem Res Toxicol. 2019;32(2):222–233.
  • Niknejad F, Mohammadi M, Khomeiri M, Razavi SH, Alami M. Antifungal and antioxidant effects of hops (Humulus lupulus L.) flower extracts. Adv Environ Biol. 2014;8(24):395–402.
  • Degrandi-Hoffman G, Ahumada F, Probasco G, Schantz L. The effects of beta acids from hops (Humulus lupulus) on mortality of Varroa destructor (Acari: Varroidae). Exp Appl Acarol. 2012;58(4):407–421.
  • Iglesias A, Gimenez Martinez P, Ramirez C, et al. Valorization of hop leaves for development of eco-friendly bee pesticides. Apidologie. 2021;52(1):186–198.
  • Moškrič A, Bubnič J, Škerl MI, Prešern J. Potential positive effects of hop beta acids on parasitic mite Varroa destructor control in honey bee colonies. J Hyg Eng Des. 2018;24:21–28.
  • Rademacher E, Harz M, Schneider S. The development of HopGuard® as a winter treatment against Varroa destructor in colonies of Apis mellifera. Apidologie. 2015;46(6):748–759.
  • Yan YF, Wu TL, Du SS, et al. The antifungal mechanism of isoxanthohumol from Humulus lupulus Linn. IJMS. 2021;22(19):10853.
  • Goblirsch M, Huang ZY, Spivak M. Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection. PLoS One. 2013;8(3):e58165.
  • Amdam GV, Norberg K, Page RE Jr, Erber J, Scheiner R. Downregulation of vitellogenin gene activity increases the gustatory responsiveness of honey bee workers (Apis mellifera). Behav Brain Res. 2006;169(2):201–205.
  • Li Z, Hou M, Qiu Y, Zhao B, Nie H, Su S. Changes in antioxidant enzymes activity and metabolomic profiles in the guts of honey bee (Apis mellifera) larvae infected with Ascosphaera apis. Insects. 2020;11(7):419.
  • Weirich GF, Collins AM, Williams VP. Antioxidant enzymes in the honey bee, Apis mellifera. Apidologie. 2002;33(1):3–14.
  • McGowan J, De la Mora A, Goodwin PH, et al. Viability and infectivity of fresh and cryopreserved Nosema ceranae spores. J Microbiol Methods. 2016;131:16–22.
  • Evans JD, Chen YP, Prisco GD, Pettis J, Williams V. Bee cups: single-use cages for honey bee experiments. J Apic Res. 2009;48(4):300–302.
  • Cantwell GE. Standard methods for counting Nosema spores. Am Bee J. 1970;110:222–223.
  • Hamiduzzaman MM, Guzman-Novoa E, Goodwin PH. A multiplex PCR assay to diagnose and quantify Nosema infections in honey bees (Apis mellifera). J Invertebr Pathol. 2010;105(2):151–155.
  • Costa C, Lodesani M, Maistrello L. Effect of thymol and resveratrol administered with candy or syrup on the development of Nosema ceranae and on the longevity of honeybees (Apis mellifera L.) in laboratory conditions. Apidologie. 2010;41(2):141–150.
  • Tajabadi N, Mardan M, Saari N, Mustafa S, Bahreini R, Manap MY. Identification of Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus fermentum from honey stomach of honeybee. Braz J Microbiol. 2013;44(3):717–722.
  • Sahebzadeh N, Lau WH. Expression of heat-shock protein genes in Apis mellifera meda (Hymenoptera: Apidae) after exposure to monoterpenoids and infestation by Varroa destructor mites (Acari: Varroidae). Eur J Entomol. 2017;114:195–202.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2- ΔΔCT method. Methods. 2001;25(4):402–408.
  • Glavinic U, Stankovic B, Draskovic V, et al. Dietary amino acid and vitamin complex protects honey bee from immunosuppression caused by Nosema ceranae. PLoS One. 2017;12(11):e0187726.
  • Emsen B, De la Mora A, Lacey B, et al. Seasonality of Nosema ceranae infections and their relationship with honey bee populations, food stores, and survivorship in a North American region. Vet Sci. 2020;7(3):131.
  • Higes M, García-Palencia P, Martín-Hernández R, Meana A. Experimental infection of Apis mellifera honeybees with the Microsporidia Nosema ceranae. J Invertebr Pathol. 2007;94(3):211–217.
  • Chaimanee V, Kasem A, Nuanjohn T, et al. Natural extracts as potential control agents for Nosema ceranae infection in honeybees, Apis mellifera. J Invertebr Pathol. 2021;186:107688.
  • Milbrath MO, van Tran T, Huang WF, et al. Comparative virulence and competition between Nosema apis and Nosema ceranae in honey bees (Apis mellifera). Journal of Invertebrate Pathology. 2015;125:9–15.
  • Urbieta-Magro A, Higes M, Meana A, Barrios L, Martín-Hernández R. Age and method of inoculation influence the infection of worker honey bees (Apis mellifera) by Nosema ceranae. Insects. 2019;10(12):417.
  • Pavela R, Vrchotová N, Tříska J. Mosquitocidal activities of thyme oils (Thymus vulgaris L.) against Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. 2009;105(5):1365–1370.
  • Phillips AK, Appel AG, Sims SR. Topical toxicity of essential oils to the German cockroach (Dictyoptera: Blattellidae). J Econ Entomol. 2010;103(2):448–459.
  • Rubanov A, Russell KA, Rothman JA, Nieh JC, McFrederick QS. Intensity of Nosema ceranae infection is associated with specific honey bee gut bacteria and weakly associated with gut microbiome structure. Sci Rep. 2019;9(1):1–8.
  • Iorizzo M, Letizia F, Ganassi S, et al. A. functional properties and antimicrobial activity from lactic acid bacteria as resources to improve the health and welfare of honey bees. Insects. 2022;13(3):308.
  • Jabal-Uriel C, Alba C, Higes M, Rodríguez JM, Martín-Hernández R. Effect of Nosema ceranae infection and season on the gut bacteriome composition of the European honeybee (Apis mellifera). Sci Rep. 2022;12(1):1–3.
  • Zhang Y, Su M, Wang L, Huang S, Su S, Huang WF. Vairimorpha (Nosema) ceranae infection alters honey bee microbiota composition and sustains the survival of adult honey bees. Biology. 2021;10(9):905.
  • Xu J, Zhou F, Ji BP, Pei RS, Xu N. Carvacrol and thymol had desired antimicrobial effect on E. coli. The antibacterial effects were attributed to their ability to permeabilize and depolarize the cytoplasmic membrane. Lett Appl Microbiol. 2008;47(3):174–179.
  • Grif K, Dierich MP, Pfaller K, Miglioli PA, Allerberger F. In vitro activity of fosfomycin in combination with various antistaphylococcal substances. J Antimicrob Chemother. 2001;48(2):209–217.
  • Anang DM, Rusul G, Radu S, Bakar J, Beuchat LR. Inhibitory effect of oxalic acid on bacterial spoilage of raw chilled chicken. J Food Prot. 2006;69(8):1913–1919.
  • Paris L, Roussel M, Pereira B, Delbac F, Diogon M. Disruption of oxidative balance in the gut of the western honeybee Apis mellifera exposed to the intracellular parasite Nosema ceranae and to the insecticide fipronil. Microb Biotechnol. 2017;10(6):1702–1717.
  • Gashout HA, Guzmán-Novoa E. Acute toxicity of essential oils and other natural compounds to the parasitic mite, Varroa destructor, and to larval and adult worker honey bees (Apis mellifera L.). J Apic Res. 2009;48(4):263–269.
  • Boncristiani H, Underwood R, Schwarz R, Evans JD, Pettis J, vanEngelsdorp D. Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera. J Insect Physiol. 2012;58(5):613–620.
  • Toomemaa K. The synergistic effect of weak oxalic acid and thymol aqueous solutions on Varroa mites and honey bees. J Apic Res. 2019;58(1):37–52.
  • Antúnez K, Martín‐Hernández R, Prieto L, Meana A, Zunino P, Higes M. Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environ Microbiol. 2009;11(9):2284–2290.
  • Corona M, Libbrecht R, Wheeler DE. Molecular mechanisms of phenotypic plasticity in social insects. Curr Opin Insect Sci. 2016;13:55–60.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.