666
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Diverse pathogen-associated molecular patterns affect transcription of genes in the toll-like receptor signaling pathway in goat blood

, , , , , & show all

References

  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol. 2010;11(5):373–384.
  • Underhill DM, Ozinsky A. Toll-like receptors: key mediators of microbe detection. Curr Opin Immunol. 2002;14(1):103–110.
  • Schijns V. Immunological concepts of vaccine adjuvant activity. Curr Opin Immunol. 2000;12(4):456–463.
  • Adjei-Fremah S, Ekwemalor K, Asiamah EK, Ismail H, Ibrahim S, Worku M. Effect of probiotic supplementation on growth and global gene expression in dairy cows. J Appl Anim Res. 2018;46(1):257–263.
  • Tartey S, Takeuchi O. Pathogen recognition and toll-like receptor targeted therapeutics in innate immune cells. Int Rev Immunol. 2017;36(2):57–73.
  • Tirumurugaan K, Dhanasekaran S, Raj GD, Raja A, Kumanan K, Ramaswamy V. Differential expression of toll-like receptor mRNA in selected tissues of goat (Capra hircus). Vet Immunol Immunopathol. 2010;133(2–4):296–301.
  • Offord V, Coffey TJ, Werling D. LRRfinder: a web application for the identification of leucine-rich repeats and an integrative toll-like receptor database. Dev Comp Immunol. 2010;34(10):1035–1041.
  • Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4(7):499–511.
  • Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity. Cell. 2020;180(6):1044–1066.
  • Vidya MK, Kumar VG, Sejian V, Bagath M, Krishnan G, Bhatta R. Toll-like receptors: significance, ligands, signaling pathways, and functions in mammals. Int Rev Immunol. 2018;37(1):20–36.
  • Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–820.
  • Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5:461.
  • Ekwemalor K, Adjei-Fremah S, Asiamah E, Ismail H, Worku M. 0167 Exposure of bovine blood to pathogen associated and non pathogen associated molecular patterns results in transcriptional activation. J Anim Sci. 2016;94(suppl_5):81–81.
  • Carl VS, Brown-Steinke K, Nicklin MJ, Smith MF. Toll-like receptor 2 and 4 (TLR2 and TLR4) agonists differentially regulate secretory interleukin-1 receptor antagonist gene expression in macrophages. J Biol Chem. 2002;277(20):17448–17456.
  • Zhang Y, Liang X, Bao X, Xiao W, Chen G. Toll-like receptor 4 (TLR4) inhibitors: current research and prospective. Eur J Med Chem. 2022;235:114291.
  • Takeda K, Akira S. TLR signaling pathways. Proc. Semin Immunol 2004;16(1):3–9.
  • Yang IV, Jiang W, Rutledge HR, et al. Identification of novel innate immune genes by transcriptional profiling of macrophages stimulated with TLR ligands. Mol Immunol. 2011;48(15–16):1886–1895.
  • Werling D, Coffey TJ. Pattern recognition receptors in companion and farm animals–the key to unlocking the door to animal disease? Vet J. 2007;174(2):240–251.
  • Ekwemalor K. 2018. Detection of galectin expression and its modulation in goat peripheral blood. North Carolina Agricultural and Technical State University. Available from ProQuest Dissertations & Theses Global. (2161761938). Retrieved from http://ncat.idm.oclc.org/login?url=https://www.proquest.com/dissertations-theses/de
  • Adjei-Fremah S, Ekwemalor K, Asiamah E, Ismail H, Worku M. Transcriptional profiling of the effect of lipopolysaccharide (LPS) pretreatment in blood from probiotics-treated dairy cows. Genom Data. 2016;10:15–18.
  • Asiamah EK, Adjei-Fremah S, Ekwemalor K, Sordillo L, Worku M. Parity and periparturient period affects galectin gene expression in Holstein cow blood. J Appl Biotechn. 2018;6(2):20.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402–408.
  • Kannaki T, Shanmugam M, Verma P. Toll-like receptors and their role in animal reproduction. Anim Reprod Sci. 2011;125(1–4):1–12.
  • Tourais-Esteves I, Bernardet N, Lacroix-Lamandé S, Ferret-Bernard S, Laurent F. Neonatal goats display a stronger TH1-type cytokine response to TLR ligands than adults. Dev Comp Immunol. 2008;32(10):1231–1241.
  • Dowling JK, Mansell A. Toll‐like receptors: the Swiss army knife of immunity and vaccine development. Clin Transl Immunol. 2016;5(5):e85.
  • Goff PH, Hayashi T, Martínez-Gil L, et al. Synthetic Toll-like receptor 4 (TLR4) and TLR7 ligands as influenza virus vaccine adjuvants induce rapid, sustained, and broadly protective responses. J Virol. 2015;89(6):3221–3235.
  • Kaisho T, Akira S. Toll-like receptors as adjuvant receptors. Biochim Biophys Acta. 2002;1589(1):1–13.
  • Ekwemalor K, Adjei-Fremah S, Asiamah E, Worku M. Molecular genetics and genome biology of goats. 2018; https://doi.org/10.5772/intechopen.72414
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.
  • Xia P, Wu Y, Lian S, et al. Research progress on Toll-like receptor signal transduction and its roles in antimicrobial immune responses. Appl Microbiol Biotechnol. 2021;105(13):5341–5355.
  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-κB by toll-like receptor 3. Nature. 2001;413(6857):732–738.
  • De Waele J, Marcq E, Van Audenaerde J, et al. 2018. PO-419 poly (I: C) prepares glioblastoma cells for anti-PD-L1 therapy via lymphocyte attraction and activation in a TLR3-dependent manner. BMJ Publishing Group Limited. ESMO Open, 3, A394-A395.
  • Edelmann KH, Richardson-Burns S, Alexopoulou L, Tyler KL, Flavell RA, Oldstone MB. Does Toll-like receptor 3 play a biological role in virus infections? Virology. 2004;322(2):231–238.
  • Lopez AG, Bekiaris V, Müller-Luda K, et al. The role of TLR3/TRIF and type I IFN signaling in the migration of intestinal DC subsets in response to poly (I: C). Eur J Immunol. 2018;48(S1):150–150.
  • Zhu Q, Egelston C, Vivekanandhan A, et al. Toll-like receptor ligands synergize through distinct dendritic cell pathways to induce T cell responses: implications for vaccines. Proc Natl Acad Sci USA. 2008;105(42):16260–16265.
  • Fermino ML, Polli CD, Toledo KA, et al. LPS-induced galectin-3 oligomerization results in enhancement of neutrophil activation. PLOS One. 2011;6(10):e26004.
  • Ranf S. Immune sensing of lipopolysaccharide in plants and animals: same but different. PLOS Pathog. 2016;12(6):e1005596.
  • Schmitz S, Pfaffl M, Meyer H, Bruckmaier R. Short-term changes of mRNA expression of various inflammatory factors and milk proteins in mammary tissue during LPS-induced mastitis. Domest Anim Endocrinol. 2004;26(2):111–126.
  • Cochet F, Peri F. The role of carbohydrates in the lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signalling. IJMS. 2017;18(11):2318.
  • Janeway CA, Jr., Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20(1):197–216.
  • Lim KH, Staudt LM. Toll-like receptor signaling. Cold Spring Harb Perspect Biol. 2013;5(1):a011247.
  • Adjei-Fremah S, Asiamah EK, Ekwemalor K, Jackai L, Schimmel K, Worku M. Modulation of bovine Wnt signaling pathway genes by cowpea phenolic extract. JAS. 2016;8(3):21.
  • Asiamah EK, Ekwemalor K, Adjei-Fremah S, Osei B, Newman R, Worku M. Natural and synthetic Pathogen associated molecular patterns modulate galectin expression in cow blood. J Anim Sci Technol. 2019;61(5):245–253.
  • Peri F, Piazza M, Calabrese V, Damore G, Cighetti R. Exploring the LPS/TLR4 signal pathway with small molecules. Portland Press Limited. Biochem Soc Trans 2010;38(5):1390–1395. https://doi.org/10.1042/BST0381390
  • Akira S, Hemmi H. Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett. 2003;85(2):85–95.
  • Bhardwaj N, Gnjatic S, Sawhney NB. TLR agonists: Are they good adjuvants? Cancer J. 2010;16(4):382.
  • Gilliet M, Cao W, Liu Y-J. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol. 2008;8(8):594–606.
  • Takeuchi O, Kawai T, Mühlradt PF, et al. Discrimination of bacterial lipoproteins by toll-like receptor 6. Int Immunol. 2001;13(7):933–940.
  • Zhu J, Dong J, Ji L, et al. anti-allergic inflammatory activity of interleukin-37 is mediated by novel signaling cascades in human eosinophils. Front Immunol. 2018;9:1445.
  • Ekwemalor K, Asiamah E, Worku M. Effect of a mushroom (Coriolus versicolor) based probiotic on the expression of toll-like receptors and signal transduction in goat neutrophils. JMBR. 2016;6(1):71.
  • Ghosh TK, Mickelson DJ, Fink J, et al. Toll-like receptor (TLR) 2–9 agonists-induced cytokines and chemokines: I. Comparison with T cell receptor-induced responses. Cell Immunol. 2006;243(1):48–57.
  • Wang F, Li Y, Yang C, et al. Mannan-binding lectin suppresses peptidoglycan-induced TLR2 activation and inflammatory responses. Mediat Inflamm. 2019;2019:1–12.
  • Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol. 2002;20(1):709–760.
  • Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol. 2003;3(2):133–146.
  • Takeuchi O, Hoshino K, Kawai T, et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity. 1999;11(4):443–451.
  • Weeratna RD, Makinen SR, McCluskie MJ, Davis HL. TLR agonists as vaccine adjuvants: comparison of CpG ODN and Resiquimod (R-848). Vaccine. 2005;23(45):5263–5270.