874
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Condition optimization for electroporation transfection in horse skeletal muscle satellite cells

, , , , , , , , , , & show all

References

  • Shefer G, Wleklinski-Lee M, Yablonka-Reuveni Z. Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway. J Cell Sci. 2004;117(Pt 22):5393–5404.
  • DeBoer ML, Martinson KM, Pampusch MS, et al. Cultured equine satellite cells as a model system to assess leucine stimulated protein synthesis in horse muscle. J Anim Sci. 2018;96(1):143–153.
  • Lee HG, Choi JY, Park JW, et al. Effects of exercise on myokine gene expression in horse skeletal muscles. Asian-Australas J Anim Sci. 2019;32(3):350–356.
  • Reed SA, LaVigne EK, Jones AK, et al. Horse species symposium: the aging horse: effects of inflammation on muscle satellite cells. J Anim Sci. 2015;93(3):862–870.
  • Liu Y, Zhou G, Liu Z, et al. Mussel inspired polynorepinephrine functionalized electrospun polycaprolactone microfibers for muscle regeneration. Sci Rep. 2017;7(1):8197.
  • Wurm FM. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol. 2004;22(11):1393–1398.
  • Woods NB, Muessig A, Schmidt M, et al. Lentiviral vector transduction of NOD/SCID repopulating cells results in multiple vector integrations per transduced cell: risk of insertional mutagenesis. Blood. 2003;101(4):1284–1289.
  • Ai J, Sun JH, Ma J, et al. Effects of lentivirus-mediated endostatin on endothelial progenitor cells. Oncotarget. 2017;8(55):94431–94439.
  • Kingston RE, Chen CA, Okayama H. Calcium phosphate transfection. Curr Protoc Immunol. 2001;Chapter10:Unit 10.13.
  • Guo L, Wang L, Yang R, et al. Optimizing conditions for calcium phosphate mediated transient transfection. Saudi J Biol Sci. 2017;24(3):622–629.
  • Kawakami S, Higuchi Y, Hashida M. Nonviral approaches for targeted delivery of plasmid DNA and oligonucleotide. J Pharm Sci. 2008;97(2):726–745.
  • Gao X, Kim KS, Liu D. Nonviral gene delivery: what we know and what is next. AAPS J. 2007;9(1):E92–104.
  • Neumann E, Schaefer-Ridder M, Wang Y, et al. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1982;1(7):841–845.
  • Canatella PJ, Karr JF, Petros JA, et al. Quantitative study of electroporation-mediated molecular uptake and cell viability. Biophys J. 2001;80(2):755–764.
  • Hyder I, Eghbalsaied S, Kues WA. Systematic optimization of square-wave electroporation conditions for bovine primary fibroblasts. BMC Mol Cell Biol. 2020;21(1):9.
  • Lohr F, Lo DY, Zaharoff DA, et al. Effective tumor therapy with plasmid-encoded cytokines combined with in vivo electroporation. Cancer Res. 2001;61(8):3281–3284.
  • Guo Y, Zhang Y, Klein R, et al. Irreversible electroporation therapy in the liver: longitudinal efficacy studies in a rat model of hepatocellular carcinoma. Cancer Res. 2010;70(4):1555–1563.
  • Mehier-Humbert S, Guy RH. Physical methods for gene transfer: improving the kinetics of gene delivery into cells. Adv Drug Deliv Rev. 2005;57(5):733–753.
  • Nowaczyk M, Malcher A, Zimna A, et al. Transient and stable overexpression of extracellular superoxide dismutase is positively associated with the myogenic function of human skeletal muscle-derived stem/progenitor cells. Antioxidants. 2020;9(9):817.
  • Blanton JR Jr., Bidwell CA, Sanders DA, et al. Plasmid transfection and retroviral transduction of porcine muscle cells for cell-mediated gene transfer. J Anim Sci. 2000;78(4):909–918.
  • Grisolia AB, Curi RA, De Lima VF, et al. Targeted nucleotide exchange in bovine myostatin gene. Anim Biotechnol. 2009;20(1):15–27.
  • Miersch C, Stange K, Rontgen M. Separation of functionally divergent muscle precursor cell populations from porcine juvenile muscles by discontinuous Percoll density gradient centrifugation. BMC Cell Biol. 2018;19(1):2.
  • Li BJ, Li PH, Huang RH, et al. Isolation, culture and identification of porcine skeletal muscle satellite cells. Asian-Australas J Anim Sci. 2015;28(8):1171–1177.
  • Danoviz ME, Yablonka-Reuveni Z. Skeletal muscle satellite cells: background and methods for isolation and analysis in a primary culture system. Methods Mol Biol. 2012;798:21–52.
  • Gehl J. Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. Acta Physiol Scand. 2003;177(4):437–447.
  • Hui SW. Effects of pulse length and strength on electroporation efficiency. Methods Mol Biol. 1995;55:29–40.
  • Cheong DE, Lee HI, So JS. Optimization of electrotransformation conditions for Propionibacterium acnes. J Microbiol Methods. 2008;72(1):38–41.
  • Guo H, Hao R, Wei Y, et al. Optimization of electrotransfection conditions of mammalian cells with different biological features. J Membr Biol. 2012;245(12):789–795.
  • Dong S, Li J, Luo L, et al. Feasibility of transfecting exogenous genes into rat skeletal myoblasts by electroporation. J Clin Rehab Tissue Eng Res. 2008;(12):2206–2210.
  • Espinos E, Liu JH, Bader CR, et al. Efficient non-viral DNA-mediated gene transfer to human primary myoblasts using electroporation. Neuromuscul Disord. 2001;11(4):341–349.
  • Peng B, Zhao Y, Lu H, et al. In vivo plasmid DNA electroporation resulted in transfection of satellite cells and lasting transgene expression in regenerated muscle fibers. Biochem Biophys Res Commun. 2005;338(3):1490–1498.
  • Yada E, Yamanouchi K, Nishihara M. Adipogenic potential of satellite cells from distinct skeletal muscle origins in the rat. J Vet Med Sci. 2006;68(5):479–486.
  • Kawai M, Minami Y, Sayama Y, et al. Muscle fiber population and biochemical properties of whole body muscles in Thoroughbred horses. Anat Rec. 2009;292(10):1663–1669.
  • Yamanouchi K, Soeta C, Suzuki S, et al. Identification of skeletal muscle satellite cells by transfecting EGFP driven by skeletal alpha-actin promoter. J Vet Med Sci. 2000;62(11):1213–1216.