713
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Whole genome resequencing-based analysis of plateau adaptation in Meiren yak (Bos grunniens)

, , , , , , , , & show all

References

  • Qi X, Zhang Q, He Y, et al. The transcriptomic landscape of yaks reveals molecular pathways for high altitude adaptation. Genome Biol Evol. 2019:11(1):72–85.
  • Bao Q, Zhang X, Bao P, et al. Using weighted gene co-expression network analysis (WGCNA) to identify the hub genes related to hypoxic adaptation in yak (Bos grunniens). Genes Genom. 2021;43(10):1231–1246.
  • Ma SL, Li XW, Li X, et al. Assessment of genetic structure of 3 Maiwa yak preserved populations based ongenotyping-by-sequencing technology. Acta Pratacult Sin. 2022;31(09):183–194.
  • Wang H, Chai Z, Hu D, et al. A global analysis of CNVs in diverse yak populations using whole-genome resequencing. BMC Genom. 2019;20(1):61.
  • Jie Z, Zhen ZX, Ai LC, et al. Identification of meat from yak and cattle using SNP markers with integrated allele-specific polymerase chain reaction-capillary electrophoresis method. Meat Sci. 2019;148:120–126.
  • Yan XJ, Lei YH, Xie P, et al. Recent progress in processing technologies for yak jerky meat. Meat Research/Roulei Yanjiu. 2019;33(3):67–71.
  • Wang K, Hu QJ, Ma H, et al. Genome-wide variation within and between wild and domestic yak. Mol Ecol Resour. 2014;14(4):794–801.
  • Radzik-Rant A, Wojtunik K, Gutowski A. Characteristics and distribution of yak in the world. Wiadomości Zootech. 2014;52(2):130–141.
  • Wu J. The distributions of Chinese yak breeds in response to climate change over the past 50 years. Anim Sci J. 2016;87(7):947–958.
  • Das PP, Krishnan G, Doley J, et al. Establishing gene Amelogenin as sex-specific marker in yak by genomic approach. J Genet. 2019;98:7–12.
  • Wang XD, Pei J, Bao PJ, et al. Mitogenomic diversity and phylogeny analysis of yak (Bos grunniens). BMC Genomics. 2021;22(1):325.
  • Lan DL, Ji WH, Xiong XR, et al. Population genome of the newly discovered Jinchuan yak to understand its adaptive evolution in extreme environments and generation mechanism of the multirib trait. Integr Zool. 2020;16(5):685–695.
  • Tang YQ. Development of highland special ecological yak problems and countermeasures. China Livest Poult Seed Ind. 2020;16(11):30.
  • Wang Q, Li D, Guo A, et al. Whole-genome resequencing of Dulong Chicken reveal signatures of selection. Br Poult Sci. 2020;61(6):624–631.
  • Chen QM, Huang YF, Wang ZH, et al. Whole-genome resequencing reveals diversity and selective signals in Longlin goat. Gene. 2021;771:145371–145385.
  • Gulcher J, Stefansson K. Population genomics: laying the groundwork for genetic disease modeling and targeting. Clin Chem Lab Med. 1998;36(8):523–527.
  • Ellegren H. Genome sequencing and population genomics in non-model organisms. Trends Ecol Evol. 2014;29(1):51–63.
  • Begun DJ, Holloway AK, Stevens K, et al. Population genomics: whole-genome analysis of polymorphism and divergence in Drosophila simulans. PLoS Biol. 2007;5(11):e310.
  • Xu XY, Bai GH. Whole-genome resequencing: changing the paradigms of SNP detection molecular mapping and gene discovery. Mol Breed. 2015;35(1):11.
  • Liu YC, Sun X, Driscoll C, et al. Genome-wide evolutionary analysis of natural history and adaptation in the world’s tigers. Curr Biol. 2018;28(23):3840–3849.e6.
  • Kim J, Hanotte O, Mwai OA, et al. The genome landscape of indigenous African cattle. Genome Biol. 2017;18(1):34.
  • Wu DD, Ding XD, Wang S, et al. Pervasive introgression facilitated domestication and adaptation in the Bos species complex. Nat Ecol Evol. 2018;2(7):1139–1145.
  • Guo JZ, Tao HX, Li PF, et al. Whole-genome sequencing reveals selection signatures associated with important traits in six goat breeds. Sci Rep. 2018;8(1):10405–10415.
  • Chen NB, Cai YD, Chen QM, et al. Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia. Nat Commun. 2018;9(1):1–13.
  • Fan HH, Wang TJ, Li Y, et al. Development and validation of a 1 K sika deer (Cervus nippon) SNP Chip. BMC Genom Data. 2021;22(1):35.
  • Li XK, Su R, Wan WT, et al. Identification of selection signals by large-scale whole-genome resequencing of cashmere goats. Sci Rep. 2017;7(1):15142.
  • Li QF, Zhao XB, Liu HL, Li N, Xie Z. A review of the research on taxonomic status in yak (Poephagus). Acta Zootaxonom Sin. 2006;31(3):520–524.
  • Xu SY, Zhao LL, Xiao SJ, Gao TX. Whole genome resequencing data for three rockfish species of Sebastes. Sci Data. 2019;6(1):97.
  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30(15):2114–2120.
  • Mckenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–1303.
  • Purcell S, Neale B, Todd-Brown K, et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–575.
  • Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–589.
  • Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust relationship inference in genome-wide association studies. Bioinformatics 2010;26(22):2867–2873.
  • Haubold B, Pfaffelhuber P, Lynch M. mlRho–a program for estimating the population mutation and recombination rates from shotgun‐sequenced diploid genomes. Mol Ecol. 2010;19(1):277–284.
  • Zhang C, Dong SS, Xu JY, He WM, Yang TL. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 2019;35(10):1786–1788.
  • Danecek P, Auton A, Abecasis G, et al. The variant call format and VCFtools. Bioinformatics 2011;27(15):2156–2158.
  • Shi HB, Li TT, Su MC, et al. Whole genome sequencing revealed genetic diversity, population structure, and selective signature of Panou Tibetan sheep. BMC Genom. 2023;24(1):50.
  • Chen H, Patterson N, Reich D. Population differentiation as a test for selective sweeps. Genome Res. 2010;20(3):393–402.
  • Kang YD, Guo SK, Wang XD, et al. Whole-genome resequencing highlights the unique characteristics of Kecai Yaks. Animals (Basel). 2022;12(19):2682–2692.
  • Chen B, Hua ZY, Qin XN, Li ZJ. Integrated microarray to identify the Hub miRNAs and constructed miRNA–mRNA network in neuroblastoma via bioinformatics analysis. Neurochem Res. 2021;46(2):197–212.
  • Qiu Q, Zhang GJ, Ma T, et al. The yak genome and adaptation to life at high altitude. Nat Genet. 2012;44(8):946–949.
  • Liu Y, Yan CY, Matthew C, Wood B, Hou FJ. Key sources and seasonal dynamics of greenhouse gas fluxes from yak grazing systems on the Qinghai-Tibetan Plateau. Sci Rep. 2017;7(1):40857–40867.
  • Wang MS, Li Y, Peng MS, et al. Genomic analyses reveal potential independent adaptation to high altitude in Tibetan chickens. Mol Biol Evol. 2015;32(7):1880–1889.
  • Wang GD, Zhai WW, Yang HC, et al. Out of southern East Asia: the natural history of domestic dogs across the world. Cell Res. 2016;26(1):21–33.
  • Leocard S. Selective sweep and the size of the hitchhiking set. Adv Appl Probab. 2009;41(3):731–764.
  • Zhou T, Wang N, Wang Y, et al. Nucleotide evolution, domestication selection, and genetic relationships of chloroplast genomes in the economically important crop genus gossypium. Front Plant Sci. 2022;13:873788–873803.
  • Xiang H, Li X, Dai FY, et al. Comparative methylomics between domesticated and wild silkworms implies possible epigenetic influences on silkworm domestication. BMC Genom. 2013;14(1):646.
  • Friedrich J, Talenti A, Arvelius P, Strandberg E, Haskell MJ, Wiener P. Unravelling selection signatures in a single dog breed suggests recent selection for morphological and behavioral traits. Adv Genet (Hoboken). 2020;1(1):e10024.
  • Rezvannejad E, Asadollahpour NH, Esmailizadeh A. Detection of candidate genes affecting milk production traits in sheep using whole-genome sequencing analysis. Vet Med Sci. 2022;8(3):1197–1204.
  • Wanders RJA, Vreken P, Ferdinandusse S, et al. Peroxisomal fatty acid α-and β-oxidation in humans: enzymology, peroxisomal metabolite transporters and peroxisomal diseases. Biochem Soc Trans. 2001;29(2):250–267.
  • Wang YL, Li X, Cao Y, et al. Effect of the ACAA1 gene on preadipocyte differentiation in sheep. Front Genet. 2021;12:649140–649149.
  • Lisowski P, Kościuczuk EM, Gościk J, Pierzchała M, Rowińska B, Zwierzchowski L. Hepatic transcriptome profiling identifies differences in expression of genes associated with changes in metabolism and postnatal growth between Hereford and Holstein‐Friesian bulls. Anim Genet. 2014;45(2):288–292.
  • Li GX, Fu SY, Chen Y, et al. MicroRNA-15a regulates the differentiation of intramuscular preadipocytes by targeting ACAA1, ACOX1 and SCP2 in chickens. Int J Mol Sci. 2019;20(16):4063–4075.
  • Wiley DM, Jin SW. Bone Morphogenetic Protein functions as a context-dependent angiogenic cue in vertebrates. Semin Cell Dev Biol. 2011;22(9):1012–1018.
  • Maguer-Satta V, Rimokh R. FLRG, member of the follistatin family, a new player in hematopoiesis. Mol Cell Endocrinol. 2004;225(1–2):109–118.
  • Nemeth E. Iron regulation and erythropoiesis. Curr Opin Hematol. 2008;15(3):169–175.
  • Yang M, Guo MY, Hu YH, Jiang Y. Scube regulates synovial angiogenesis-related signaling. Med Hypotheses. 2013;81(5):948–953.
  • Ding A, Li CH, Yu CY, Zhou HT, Zhang ZH. Long non-coding RNA MALAT1 enhances angiogenesis during bone regeneration by regulating the miR-494/SP1 axis. Lab Invest. 2021;101(11):1458–1466.
  • Detmer K, Walker AN. Bone morphogenetic proteins act synergistically with haematopoietic cytokines in the differentiation of haematopoietic progenitors. Cytokine. 2002;17(1):36–42.
  • Chen DF, Tian W, Li Y, Tang WJ, Zhang C. Osteoblast-specific transcription factor Osterix (Osx) and HIF-1α cooperatively regulate gene expression of vascular endothelial growth factor (VEGF). Biochem Biophys Res Commun. 2012;424(1):176–181.
  • Chen DI, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Fact. 2004;22(4):233–241.
  • Magga J, Vainio L, Kilpiö T, et al. Systemic blockade of ACVR2B ligands protects myocardium from acute ischemia-reperfusion injury. Mol Ther. 2019;27(3):600–610.
  • Bai L, Liu BN, Ji CM, et al. Hypoxic and cold adaptation insights from the Himalayan marmot genome. Iscience 201911:519–530.