313
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Genome-wide identification of the Hsp70 gene family in Penaeus chinensis and their response to environmental stress

&

References

  • Zuiderweg ER, Hightower LE, Gestwicki JE. The remarkable multivalency of the Hsp70 chaperones. Cell Stress Chaperones. 2017;22(2):173–189.
  • Yu EM, Yoshinaga T, Jalufka FL, Ehsan H, Mark Welch DB, Kaneko G. The complex evolution of the metazoan HSP70 gene family. Sci Rep. 2021a;11(1):17794.
  • Chong KY, Lai CC, Su CY. Inducible and constitutive HSP70s confer synergistic resistance against metabolic challenges. Biochem Biophys Res Commun. 2013;430(2):774–779.
  • Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B. The Hsp70 chaperone network. Nat Rev Mol Cell Biol. 2019;20(11):665–680.
  • Lyu D, Sun S, Shan X, et al. Genetic diversity monitoring of Fenneropenaeus chinensis in the Bohai Sea in the past decade: a study on the effect of release on the natural population. Reg. Stud. Mar. Sci. 2023;61:102823.
  • Xie B, Zhang M, Yang H, Jiang W. Effects of conventional versus organic production systems on amino acid profiles and heavy metal concentrations in the Chinese shrimp Penaeus chinensis. Fish Sci. 2011;77(5):839–845.
  • Kim YS, Kim EK, Ryu BI, et al. Antioxidant activity of extract from the cephalothorax of Fenneropenaeus chinensis. Adv. Exp. Med. Biol. 2017;975:1153–1163.
  • Zhu Y, Li P, Meng R, et al. Lipid profiles of the heads of four shrimp species by UPLC-Q-Exactive Orbitrap/MS and their cardiovascular activities. Molecules. 2022;27(2):350.
  • Millard RS, Ellis RP, Bateman KS, et al. How do abiotic environmental conditions influence shrimp susceptibility to disease? A critical analysis focussed on white spot disease. J Invertebr Pathol. 2021;186:107369.
  • Ren X, Wang Q, Shao H, Xu Y, Liu P, Li J. Effects of low temperature on shrimp and crab physiology, behavior, and growth: a review. Front Mar Sci. 2021;8:746177.
  • Jeyachandran S, Chellapandian H, Park K, Kwak I-S. A review on the involvement of heat shock proteins (extrinsic chaperones) in response to stress conditions in aquatic organisms. Antioxidants . 2023;12(7):1444.
  • Xue C, Xu K, Jin Y, Bian C, Sun S. Transcriptome analysis to study the molecular response in the gill and hepatopancreas tissues of Macrobrachium nipponense to salinity acclimation. Front Physiol. 2022;13:926885.
  • Ye Y, Zhu B, Zhang J, et al. Comparison of growth performance and biochemical components between low-salinity-tolerant hybrid and normal variety of pacific white shrimp (Penaeus vannamei). Animals . 2023;13(18):2837.
  • Ou H, Liang J, Liu J. Effects of acute ammonia exposure on oxidative stress, endoplasmic reticulum stress and apoptosis in the kuruma shrimp (Marsupenaeus japonicus). Aquacult. Rep. 2022;27:101383.
  • Ren X, Lv J, Liu M, et al. A chromosome-level genome of the kuruma shrimp (Marsupenaeus japonicus) provides insights into its evolution and cold-resistance mechanism. Genomics. 2022;114(3):110373.
  • Mengal K, Kor G, Kozák P, Niksirat H. Heat shock proteins adaptive responses to environmental stressors and implications in health management of decapods. Aquacult. Rep. 2023;30:101564.
  • Junprung W, Supungul P, Tassanakajon A. Litopenaeus vannamei heat shock protein 70 (LvHSP70) enhances resistance to a strain of Vibrio parahaemolyticus, which can cause acute hepatopancreatic necrosis disease (AHPND), by activating shrimp immunity. Dev Comp Immunol. 2019;90:138–146.
  • Junprung W, Supungul P, Sangklai N, Tassanakajon A. Heat shock protein 70 is a damage-associated molecular pattern that by binding to lipopolysaccharide and β-1,3-glucan-binding protein activates the prophenoloxidase system in shrimp. J Immunol. 2022;209(3):582–592.
  • Deng Z, Zhang Z, Zhao R, et al. Effects of high-salinity on the expression of aquaporins and ion transport-related genes in Chinese shrimp (Fenneropenaeus chinensis). Aquacult. Rep. 2023;30:101577.
  • Cui C, Liang Q, Tang X, Xing J, Sheng X, Zhan W. Differential apoptotic responses of hemocyte subpopulations to white spot syndrome virus infection in Fenneropenaeus chinensis. Front Immunol. 2020;11:594390.
  • He Q, Zhang X, He M, et al. Genome-wide characterization of RsHSP70 gene family reveals positive role of RsHSP70-20 gene in heat stress response in radish (Raphanus sativus L.). Plant Physiol Biochem. 2023;199:107710.
  • Tripathy K, Sodhi M, Kataria RS, Chopra M, Mukesh M. In silico analysis of Hsp70 gene family in bovine genome. Biochem Genet. 2021;59(1):134–158.
  • Sun Y, Wen H, Tian Y, et al. HSP90 and HSP70 families in Lateolabrax maculatus: genome-wide identification, molecular characterization, and expression profiles in response to various environmental stressors. Front Physiol. 2021;12:784803.
  • Gao Y, Li JN, Pu JJ, Tao KX, Zhao XX, Yang QQ. Genome-wide identification and characterization of the HSP gene superfamily in apple snails (Gastropoda: Ampullariidae) and expression analysis under temperature stress. Int J Biol Macromol. 2022;222(Pt B):2545–2555.
  • Jin S, Deng Z, Xu S, Zhang H, Han Z. Genome-wide identification and low-salinity stress analysis of the Hsp70 gene family in swimming crab (Portunus trituberculatus). Int J Biol Macromol. 2022;208:126–135.
  • Wang J, Chitsaz F, Derbyshire MK, et al. The conserved domain database in 2023. Nucleic Acids Res. 2023;51(D1):D384–D388.
  • Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020. Nucleic Acids Res. 2021;49(D1):D458–D460.
  • Wilkins MR, Gasteiger E, Bairoch A, et al. Protein identification and analysis tools in the Expasy server. Methods Mol Biol. 1999;112:531–552.
  • Horton P, Park KJ, Obayashi T, et al. WoLF PSORT: protein localization predictor. Nucleic Acids Res. 2007;35(Web Server issue):W585–W587.
  • Bailey TL, Johnson J, Grant CE, Noble WS. The MEME suite. Nucleic Acids Res. 2015;43(W1):W39–W49.
  • Hu B, Jin JP, Guo AY, Zhang H, Luo J, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2015;31(8):1296–1297.
  • Chao J, Li Z, Sun Y, et al. MG2C: a user-friendly online tool for drawing genetic maps. Mol Horticulture. 2021;1(1):16.
  • Song L, Li C, Xie Y, et al. Genome-wide identification of Hsp70 genes in channel catfish and their regulated expression after bacterial infection. Fish Shellfish Immunol. 2016;49:154–162.
  • Minh BQ, Schmidt HA, Chernomor O, et al. Corrigendum to: IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37(8):2461–2461.
  • Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022–3027.
  • Wang Y, Tang H, Debarry JD, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40(7):e49–e49.
  • Yuan J, Zhang X, Li F, Xiang J. Genome sequencing and assembly strategies and a comparative analysis of the genomic characteristics in penaeid shrimp species. Front Genet. 2021b;12:658619.
  • Yuan J, Zhang X, Wang M, et al. Simple sequence repeats drive genome plasticity and promote adaptive evolution in penaeid shrimp. Commun Biol. 2021;4(1):186.
  • Li XP, Luan S, Luo K, et al. Comparative transcriptomic analysis of Chinese shrimp Fenneropenaeus chinensis infected with white spot syndrome virus. Aquacult. Rep. 2022a;22:100986.
  • Li Y, Jin Y, Wang J, Ji G, Zhang X. Significant genes in response to low temperature in Fenneropenaeus chinensis screened through multiple transcriptome group comparisons. J Therm Biol. 2022b;107:103198.
  • Liu J, Zhang D, Zhang L, Wang Z, Shen J. New insight on vitality differences for the penaeid shrimp, Fenneropenaeus chinensis, in low salinity environment through transcriptomics. Front Ecol Evol. 2022;10:716018.
  • Chen C, Chen H, Zhang Y, et al. Tbtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13(8):1194–1202.
  • Stricher F, Macri C, Ruff M, Muller S. HSPA8/HSC70 chaperone protein: structure, function, and chemical targeting. Autophagy. 2013;9(12):1937–1954.
  • Kampinga HH, Hageman J, Vos MJ, et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones. 2009;14(1):105–111.
  • Hughes AL, Friedman R. Differential loss of ancestral gene families as a source of genomic divergence in animals. Proc Biol Sci. 2004;271 Suppl 3(Suppl 3):S107–S109.
  • Zheng W, Xu X, Chen Y, et al. Genome-wide identification, molecular characterization, and involvement in response to abiotic and biotic stresses of the hsp70 gene family in turbot (Scophthalmus maximus). Int J Mol Sci. 2023;24(7):6025.
  • Hu Z, Song H, Feng J, et al. Massive heat shock protein 70 genes expansion and transcriptional signatures uncover hard clam adaptations to heat and hypoxia. Front Mar Sci. 2022;9:898669.
  • Zhang G, Fang X, Guo X, et al. The oyster genome reveals stress adaptation and complexity of shell formation. Nature. 2012;490(7418):49–54.
  • Chen S, Qiu G. Overexpression of Zostera japonica heat shock protein gene ZjHsp70 enhances the thermotolerance of transgenic Arabidopsis. Mol Biol Rep. 2022;49(7):6189–6197.
  • Gupta RS, Golding GB. Evolution of HSP70 gene and its implications regarding relationships between archaebacteria, eubacteria, and eukaryotes. J Mol Evol. 1993;37(6):573–582.
  • Yang J, Zhang H, Gong W, et al. S-Glutathionylation of human inducible Hsp70 reveals a regulatory mechanism involving the C-terminal α-helical lid. J Biol Chem. 2020;295(24):8302–8324.
  • Long M, VanKuren NW, Chen S, Vibranovski MD. New gene evolution: little did we know. Annu Rev Genet. 2013;47(1):307–333.
  • Roy SW, Gilbert W. The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet. 2006;7(3):211–221.
  • Magadum S, Banerjee U, Murugan P, Gangapur D, Ravikesavan R. Gene duplication as a major force in evolution. J Genet. 2013;92(1):155–161.
  • Tanaka KM, Takahasi KR, Takano-Shimizu T. Enhanced fixation and preservation of a newly arisen duplicate gene by masking deleterious loss-of-function mutations. Genet Res . 2009;91(4):267–280.
  • Devi S, Chaturvedi M, Fatima S, Priya S. Environmental factors modulating protein conformations and their role in protein aggregation diseases. Toxicology. 2022;465:153049.
  • Walker AC, Bhargava R, Dove AS, Brust AS, Owji AA, Czyż DM. Bacteria-derived protein aggregates contribute to the disruption of host proteostasis. Int J Mol Sci. 2022;23(9):4807.
  • Gonzalez-Garcia M, Fusco G, De Simone A. Membrane interactions and toxicity by misfolded protein oligomers. Front Cell Dev Biol. 2021;9:642623.
  • Aragonès Pedrola JP, Rüdiger SGD. Double J-domain piloting of an Hsp70 substrate. J Biol Chem. 2021;296:100717.
  • Clerico EM, Tilitsky JM, Meng W, Gierasch LM. How hsp70 molecular machines interact with their substrates to mediate diverse physiological functions. J Mol Biol. 2015;427(7):1575–1588.
  • Causey DR, Pohl MAN, Stead DA, Martin SAM, Secombes CJ, Macqueen DJ. High-throughput proteomic profiling of the fish liver following bacterial infection. BMC Genomics. 2018;19(1):719.
  • Zhu J, Fu Q, Ao Q, et al. Transcriptomic profiling analysis of tilapia (Oreochromis niloticus) following Streptococcus agalactiae challenge. Fish Shellfish Immunol. 2017;62:202–212.
  • You K, Wang L, Chou CH, et al. QRICH1 dictates the outcome of ER stress through transcriptional control of proteostasis. Science. 2021;371(6524):eabb6896.