269
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Knockdown of miR-361-5p promotes the induced activation of SHF-stem cells through FOXM1 mediated Wnt/β-catenin pathway in cashmere goats

, , , , , , , , , & show all

References

  • Di R, Vahidi SM, Ma YH, et al. Microsatellite analysis revealed genetic diversity and population structure among Chinese cashmere goats. Anim Genet. 2011;42(4):428–431.
  • Zheng YY, Sheng SD, Hui TY, et al. An integrated analysis of cashmere fineness lncRNAs in cashmere goats. Genes. 2019;10(4):266.
  • Bai WL, Yin RH, Jiang WQ, et al. Molecular characterization of prolactin cDNA and its expression pattern in skin tissue of Liaoning cashmere goat. Biochem Genet. 2012;50(9–10):694–701.
  • Wang S, Ge W, Luo Z, et al. Integrated analysis of coding genes and non-coding RNAs during hair follicle cycle of cashmere goat (Capra hircus). BMC Genomics. 2017;18(1):767.
  • Jiao Q, Yin RH, Zhao SJ, et al. Identification and molecular analysis of a lncRNA-HOTAIR transcript from secondary hair follicle of cashmere goat reveal integrated regulatory network with the expression regulated potentially by its promoter methylation. Gene. 2019;688:182–192.
  • Avigad Laron E, Aamar E, Enshell-Seijffers D. The mesenchymal niche of the hair follicle induces regeneration by releasing primed progenitors from inhibitory effects of quiescent stem cells. Cell Rep. 2018;24(4):909–921.e3.
  • Yin R, Yin R, Bai M, et al. N6-methyladenosine modification (m6A) of circRNA-ZNF638 contributes to the induced activation of SHF stem cells through miR-361-5p/Wnt5a axis in cashmere goats. Anim Biosci. 2023;36(4):555–569.
  • Yan H, Gao Y, Ding Q, et al. Exosomal micro RNAs derived from dermal papilla cells mediate hair follicle stem cell proliferation and differentiation. Int J Biol Sci. 2019;15(7):1368–1382.
  • Shirokova V, Biggs LC, Jussila M, Ohyama T, Groves AK, Mikkola ML. Foxi3 deficiency compromises hair follicle stem cell specification and activation. Stem Cells. 2016;34(7):1896–1908.
  • Pazzaglia I, Mercati F, Antonini M, et al. PDGFA in cashmere goat: a motivation for the hair follicle stem cells to activate. Animals. 2019;9(2):38.
  • Wang X, Chen H, Tian R, et al. Macrophages induce AKT/β-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF. Nat Commun. 2017;8(1):14091.
  • Du KT, Deng JQ, He XG, Liu ZP, Peng C, Zhang MS. MiR-214 regulates the human hair follicle stem cell proliferation and differentiation by targeting EZH2 and Wnt/β-catenin signaling way in vitro. Tissue Eng Regen Med. 2018;15(3):341–350.
  • Li X, Wu Y, Xie F, et al. miR‑339‑5p negatively regulates loureirin A‑induced hair follicle stem cell differentiation by targeting DLX5. Mol Med Rep. 2018;18(2):1279–1286.
  • Ge M, Liu C, Li L, et al. miR-29a/b1 inhibits hair follicle stem cell lineage progression by spatiotemporally suppressing WNT and BMP signaling. Cell Rep. 2019;29(8):2489–2504.e4.
  • Wang J, Qu J, Li Y, et al. miR-149-5p Regulates Goat Hair Follicle Stem Cell Proliferation and Apoptosis by Targeting the CMTM3/AR Axis During Superior-Quality Brush Hair Formation. Front Genet. 2020; Nov 11;11:529757.
  • Wang J, Wu X, Zhang L, et al. MiR-149-5p promotes β-catenin-induced goat hair follicle stem cell differentiation. In Vitro Cell Dev Biol Anim. 2022;58(4):325–334.
  • Zhang A, Lu R, Lang H, Wu M. MiR-361-5p promotes proliferation and inhibits apoptosis of fibroblast-like synoviocytes via targeting ZBTB10 in rheumatoid arthritis. Autoimmunity. 2022;55(5):310–317.
  • Hou XW, Sun X, Yu Y, et al. miR-361-5p suppresses lung cancer cell lines progression by targeting FOXM1. Neoplasma. 2017;64(4):526–534.
  • Ling J, He P. miR-361-5p regulates ovarian cancer cell proliferation and apoptosis by targeting TRAF3. Exp Ther Med. 2021;21(3):199.
  • Ma M, Zhang J, Gao X, Yao W, Li Q, Pan Z. miR-361-5p mediates SMAD4 to promote porcine granulosa cell apoptosis through VEGFA. Biomolecules. 2020;10(9):1281.
  • Han W, Yang F, Wu Z, et al. Inner Mongolian cashmere goat secondary follicle development regulation research based on mRNA-miRNA co-analysis. Sci Rep. 2020;10(1):4519.
  • Kalin TV, Ustiyan V, Kalinichenko VV. Multiple faces of FoxM1 transcription factor: lessons from transgenic mouse models. Cell Cycle. 2011;10(3):396–405.
  • Zhu Y, Wang Y, Zhao J, et al. CircRNA-1967 participates in the differentiation of goat SHF-SCs into hair follicle lineage by sponging miR-93-3p to enhance LEF1 expression. Anim Biotechnol. 2023;34(3):482–494.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25(4):402–408.
  • Vidal VP, Chaboissier MC, Lützkendorf S, et al. Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment. Curr Biol. 2005;15(15):1340–1351.
  • Rosenblum MD, Yancey KB, Olasz EB, Truitt RL. CD200, a “no danger” signal for hair follicles. J Dermatol Sci. 2006;41(3):165–174.
  • Gao F, Feng J, Yao H, Li Y, Xi J, Yang J. LncRNA SBF2-AS1 promotes the progression of cervical cancer by regulating miR-361-5p/FOXM1 axis. Artif Cells Nanomed Biotechnol. 2019;47(1):776–782.
  • Jiang Y, Zhao H, Chen Y, et al. Exosomal long noncoding RNA HOXD-AS1 promotes prostate cancer metastasis via miR-361-5p/FOXM1 axis. Cell Death Dis. 2021;12(12):1129.
  • Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115(7):787–798.
  • Kim VN. Small RNAs: classification, biogenesis, and function. Mol Cells. 2005;19(1):1–15.
  • Mardaryev AN, Ahmed MI, Vlahov NV, et al. Micro-RNA-31 controls hair cycle-associated changes in gene expression programs of the skin and hair follicle. Faseb J. 2010;24(10):3869–3881.
  • Zhao J, Shen J, Wang Z, et al. CircRNA-0100 positively regulates the differentiation of cashmere goat SHF-SCs into hair follicle lineage via sequestering miR-153-3p to heighten the KLF5 expression. Arch Anim Breed. 2022;65(1):55–67.
  • Grey F, Tirabassi R, Meyers H, et al. A viral microRNA down-regulates multiple cell cycle genes through mRNA 5’UTRs. PLOS Pathog. 2010;6(6):e1000967.
  • Reczko M, Maragkakis M, Alexiou P, Grosse I, Hatzigeorgiou AG. Functional microRNA targets in protein coding sequences. Bioinformatics. 2012;28(6):771–776.
  • Helwak A, Kudla G, Dudnakova T, Tollervey D. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell. 2013;153(3):654–665.
  • Xie H, Miao N, Xu D, et al. FoxM1 promotes Wnt/β-catenin pathway activation and renal fibrosis via transcriptionally regulating multi-Wnts expressions. J Cell Mol Med. 2021;25(4):1958–1971.
  • Shi C, Zhang H, Wang M, et al. OPA interacting protein 5 antisense RNA 1 expedites cell migration and invasion through FOXM1/Wnt/β-catenin pathway in pancreatic cancer. Dig Dis Sci. 2022;67(3):915–924.
  • Wang Z, Park HJ, Carr JR, et al. FoxM1 in tumorigenicity of the neuroblastoma cells and renewal of the neural progenitors. Cancer Res. 2011;71(12):4292–4302.
  • Gong A, Huang S. FoxM1 and Wnt/β-catenin signaling in glioma stem cells. Cancer Res. 2012;72(22):5658–5662.
  • Ito M, Yang Z, Andl T, et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature. 2007;447(7142):316–320.
  • Kahn M. Can we safely target the WNT pathway? Nat Rev Drug Discov. 2014;13(7):513–532.