55
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Genome-wide selection reveals candidate genes associated with multiple teats in Hu sheep

, , , , , , & ORCID Icon show all

References

  • Li Y, Chen Z, Fang Y, et al. Runs of homozygosity revealed reproductive traits of Hu sheep. Genes. 2022;13(10):1848.
  • Griffiths K, Ridler A, Compton C, Corner-Thomas R, Kenyon P. Associations between lamb growth to weaning and dam udder and teat scores. N Z Vet J. 2019;67(4):172–179.
  • Smith EG, Hine BC, Acton GA, Bell AM, Doyle EK, Smith JL. Ewe udder and teat traits as potential selection criteria for improvement of Merino lamb survival and growth. Small Ruminant Research. 2023;225:107019.
  • Peng W-F, Xu S-S, Ren X, et al. A genome‐wide association study reveals candidate genes for the supernumerary nipple phenotype in sheep (Ovis aries). Anim Genet. 2017;48(5):570–579.
  • Banerjee P, Carmelo VAO, Kadarmideen HN. Genome-wide epistatic interaction networks affecting feed efficiency in Duroc and Landrace pigs. Front Genet. 2020;11:121.
  • Lu W, Fang P, Lei Z. Mammary tissue structure and expression of insulin-like growth factor I receptor gene in multi-papillary lake sheep. J Agric Biotechnol. 2017;25:84–93.
  • Hardwick LJA, Phythian CJ, Fowden AL, Hughes K. Size of supernumerary teats in sheep correlates with complexity of the anatomy and microenvironment. J Anat. 2020;236(5):954–962.
  • Zhao Y, Pu Y, Liang B, et al. A study using single‐locus and multi‐locus genome‐wide association study to identify genes associated with teat number in Hu sheep. Anim Genet. 2022;53(2):203–211.
  • Earnhardt-San AL, Gray KA, Knauer MT. Genetic parameter estimates for teat and mammary traits in commercial sows. Animals. 2023;13(15):2400.
  • Bovo S, Schiavo G, Utzeri VJ, et al. A genome‐wide association study for the number of teats in European rabbits (Oryctolagus cuniculus) identifies several candidate genes affecting this trait. Anim Genet. 2021;52(2):237–243.
  • Tang J, Zhang Z, Yang B, et al. Identification of loci affecting teat number by genome-wide association studies on three pig populations. Asian-Australas J Anim Sci. 2016;30(1):1–7.
  • Yang L, Li X, Zhuang Z, et al. Genome-wide association study identifies the crucial candidate genes for teat number in crossbred commercial pigs. Animals. 2023;13(11):1880.
  • Hohenlohe PA, Phillips PC, Cresko WA. Using population genomics to detect selection in natural populations: key concepts and methodological considerations. Int J Plant Sci. 2010;171(9):1059–1071.
  • Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution. 1984;38(6):1358–1370.
  • Li X. 2022. Research on Trait Variation of Different Coat Types and Their Molecular Genetic Mechanisms in Inner Mongolia Velvet Goats. Inner Mongolia Agricultural University.
  • Sabeti PC, Varilly P, Fry B, et al. Genome-wide detection and characterization of positive selection in human populations. Nature. 2007;449(7164):913–918.
  • Voight BF, Kudaravalli S, Wen X, Pritchard JK. A map of recent positive selection in the human genome. PLOS Biol. 2006;4(3):e72.
  • Ashburner M, Ball CA, Blake JA, et al. Gene ontology: Tool for the unification of biology. Nat Genet. 2000;25(1):25–29.
  • Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
  • da Silva Ribeiro T, Galván JA, Pool JE. Maximum SNP FST outperforms full-window statistics for detecting soft sweeps in local adaptation. Genome Biol Evol. 2022;14(10):evac143.
  • Lin G, Aranda V, Muthuswamy SK, Tonks NK. Identification of PTPN23 as a novel regulator of cell invasion in mammary epithelial cells from a loss-of-function screen of the “PTP-ome”. Genes Dev. 2011;25(13):1412–1425.
  • Nazar M, Abdalla IM, Chen Z, et al. Genome-wide association study for udder conformation traits in Chinese Holstein cattle. Animals. 2022a;12(19):2542.
  • Rahmatpanah F, Jia Z, Chen X, Jones FE, McClelland M, Mercola D. Expression of HER2 in breast cancer promotes a massive reorganization of gene activity and suggests a role for epigenetic regulation. J Data Mining Genomics Proteomics. 2012;3:e102.
  • Kizilaslan M, Arzik Y, White SN, Piel LMW, Cinar MU. Genetic parameters and genomic regions underlying growth and linear type traits in Akkaraman sheep. Genes. 2022;13(8):1414.
  • Sloth RA, Axelsen TV, Espejo MS, et al. Loss of RPTPγ primes breast tissue for acid extrusion, promotes malignant transformation and results in early tumour recurrence and shortened survival. Br J Cancer. 2022;127(7):1226–1238.
  • Pandey G, Borcherding N, Kolb R, et al. ROR1 potentiates FGFR signaling in basal-like breast cancer. Cancers. 2019;11(5):718.
  • Zhu B, Niu H, Zhang W, et al. Genome wide association study and genomic prediction for fatty acid composition in Chinese Simmental beef cattle using high density SNP array. BMC Genomics. 2017;18(1):464.
  • Xia J, Qi X, Wu Y, et al. Genome-wide association study identifies loci and candidate genes for meat quality traits in Simmental beef cattle. Mamm Genome. 2016;27(5–6):246–255.
  • Berihulay H, Li Y, Gebrekidan B, et al. Whole genome resequencing reveals selection signatures associated with important traits in ethiopian indigenous goat populations. Front Genet. 2019;10:1190.
  • Kadota M, Yang HH, Gomez B, et al. Delineating genetic alterations for tumor progression in the MCF10A series of breast cancer cell lines. PLOS One. 2010;5(2):e9201.
  • E. G-X, Duan X-H, Zhang J-H, et al. Genome-wide selection signatures analysis of litter size in Dazu black goats using single-nucleotide polymorphism. 3 Biotech. 2019;9(9):336.
  • Wang L, Sun X, Guo F, Zhao Y, Zhang J, Zhao Z. Transcriptome analysis of the uniparous and multiparous goats ovaries. Reprod Domest Anim. 2016;51(6):877–885.
  • Tanaga K, Bujo H, Zhu Y, et al. LRP1B attenuates the migration of smooth muscle cells by reducing membrane localization of urokinase and PDGF receptors. Arterioscler Thromb Vasc Biol. 2004;24(8):1422–1428.
  • Trujano-Chavez MZ, Ruíz-Flores A, López-Ordaz R, Pérez-Rodríguez P. Genetic diversity in reproductive traits of Braunvieh cattle determined with SNP markers. Vet Med Sci. 2022;8(4):1709–1720.
  • Ryu BJ, Kim HR, Jeong JK, Lee BJ. Regulation of the female rat estrous cycle by a neural cell-specific epidermal growth factor-like repeat domain containing protein, NELL2. Mol Cells. 2011;32(2):203–207.
  • Tetkova A, Jansova D, Susor A. Spatio-temporal expression of ANK2 promotes cytokinesis in oocytes. Sci Rep. 2019;9(1):13121.
  • Dickinson RE, Hryhorskyj L, Tremewan H, et al. Involvement of the SLIT/ROBO pathway in follicle development in the fetal ovary. Reproduction. 2010;139(2):395–407.
  • Adlat S, Sah RK, Hayel F, et al. Global transcriptome study of Dip2B-deficient mouse embryonic lung fibroblast reveals its important roles in cell proliferation and development. Comput Struct Biotechnol J. 2020;18:2381–2390.
  • He LC, Li PH, Ma X, et al. Identification of new single nucleotide polymorphisms affecting total number born and candidate genes related to ovulation rate in Chinese Erhualian pigs. Anim Genet. 2017;48(1):48–54.
  • Sánchez-Ramos R, Trujano-Chavez MZ, Gallegos-Sánchez J, Becerril-Pérez CM, Cadena-Villegas S, Cortez-Romero C. Detection of candidate genes associated with fecundity through genome-wide selection signatures of Katahdin Ewes. Animals. 2023;13(2):272.
  • Pryce JE, Haile-Mariam M, Goddard ME, Hayes BJ. Identification of genomic regions associated with inbreeding depression in Holstein and Jersey dairy cattle. Genet Sel Evol. 2014;46(1):71.
  • El Nagar AG, Heddi I, Sosa-Madrid BS, Blasco A, Hernández P, Ibáñez-Escriche N. Genome-wide association study of maternal genetic effects on intramuscular fat and fatty acid composition in rabbits. Animals. 2023;13(19):3071.
  • Menin L, Weber J, Villa S, et al. A planar polarized MYO6-DOCK7-RAC1 axis promotes tissue fluidification in mammary epithelia. Cell Rep. 2023b;42(8):113001.
  • Ma X, Cheng H, Liu Y, et al. Assessing genomic diversity and selective pressures in Bohai black cattle using whole-genome sequencing data. Animals. 2022;12(5):665.
  • Duan X, An B, Du L, et al. Genome-wide association analysis of growth curve parameters in Chinese Simmental beef cattle. Animals. 2021;11(1):192.
  • Wang K, Wu P, Wang S, et al. Genome-wide DNA methylation analysis in Chinese Chenghua and Yorkshire pigs. BMC Genom Data. 2021;22(1):21.
  • Li D, Huang M, Zhuang Z, et al. Genomic analyses revealed the genetic difference and potential selection genes of growth traits in two duroc lines. Front Vet Sci. 2021;8:725367.
  • Mancini G, Gargani M, Chillemi G, et al. Signatures of selection in five Italian cattle breeds detected by a 54K SNP panel. Mol Biol Rep. 2014;41(2):957–965.
  • Purfield DC, Evans RD, Berry DP. Reaffirmation of known major genes and the identification of novel candidate genes associated with carcass-related metrics based on whole genome sequence within a large multi-breed cattle population. BMC Genomics. 2019;20(1):720.
  • Wang K, Liu D, Hernandez-Sanchez J, et al. Genome wide association analysis reveals new production trait genes in a male Duroc population. PLOS One. 2015;10(9):e0139207.
  • Zhou C, Li C, Cai W, et al. Genome-wide association study for milk protein composition traits in a Chinese Holstein population using a single-step approach. Front Genet. 2019;10:72.
  • Jiang J, Ma L, Prakapenka D, VanRaden PM, Cole JB, Da Y. A large-scale genome-wide association study in U.S. Holstein cattle. Front Genet. 2019;10:412.
  • Wang H, Zhong J, Zhang C, et al. The whole-transcriptome landscape of muscle and adipose tissues reveals the ceRNA regulation network related to intramuscular fat deposition in yak. BMC Genomics. 2020;21(1):347.
  • Chen Z, Yao Y, Ma P, Wang Q, Pan Y. Haplotype-based genome-wide association study identifies loci and candidate genes for milk yield in Holsteins. PLOS One. 2018;13(2):e0192695.
  • Mohammadi H, Farahani AHK, Moradi MH, et al. Weighted single-step genome-wide association study uncovers known and novel candidate genomic regions for milk production traits and somatic cell score in Valle del Belice dairy sheep. Animals. 2022;12(9):1155.
  • Yudin NS, Larkin DM. Candidate genes for domestication and resistance to cold climate according to whole genome sequencing data of Russian cattle and sheep breeds. Vavilovskii Zhurnal Genet Selektsii. 2023;27(5):463–470.
  • Ai H, Yang B, Li J, Xie X, Chen H, Ren J. Population history and genomic signatures for high-altitude adaptation in Tibetan pigs. BMC Genomics. 2014;15(1):834.
  • Sun L, Qu K, Ma X, et al. Whole-genome analyses reveal genomic characteristics and selection signatures of Lincang humped cattle at the China-Myanmar border. Front Genet. 2022;13:833503.
  • Kim K-S, Seibert JT, Edea Z, et al. Characterization of the acute heat stress response in gilts: III. Genome-wide association studies of thermotolerance traits in pigs. J Anim Sci. 2018;96(6):2074–2085.
  • Tian D, Han B, Li X, et al. Genetic diversity and selection of Tibetan sheep breeds revealed by whole-genome resequencing. Anim Biosci. 2023;36(7):991–1002.