276
Views
3
CrossRef citations to date
0
Altmetric
Articles

Antimicrobial, Anti-inflammatory, and Antioxidant Activities of the Wood of Myristica fragrans

, , , , , , & show all
Pages 49-60 | Received 26 Feb 2019, Published online: 21 Oct 2019

References

  • Murtuza, F.; Farrier, A. J.; Venkatesan, M.; Smith, R.; Khan, A.; Uzoigwe, C. E.; Chami, G. Is There an Association between Body Temperature and Serum Lactate Levels in Hip Fracture Patients? Ann. R. Col.l Surg. 2015, 97(7), 513–518. DOI: 10.1308/rcsann.2015.0012.
  • Ogoina, D.;. Fever, Fever Patterns and Diseases Called ‘fever’–a Review. J. Infect Public Health. 2011, 4(3), 108–124. DOI: 10.1016/j.jiph.2011.05.002.
  • Dinarello, C. A.;. Infection, Fever, and Exogenous and Endogenous Pyrogens: some Concepts Have Changed. J. Endotoxin Res. 2004, 10(4), 201–222. DOI: 10.1179/096805104225006129.
  • Mendez, M.; LaPointe, M. C. PPARgamma Inhibition of Cyclooxygenase-2, PGE2 Synthase, and Inducible Nitric Oxide Synthase in Cardiac Myocytes. Hypertension. 2003, 42(4), 844–850. DOI: 10.1161/01.HYP.0000085332.69777.D1.
  • Okhuarobo, A.; Falodun, J. E.; Erharuyi, O.; Imieje, V.; Falodun, A.; Langer, P. Harnessing the Medicinal Properties of Andrographis Paniculata for Diseases and Beyond: a Review of Its Phytochemistry and Pharmacology. Asian Pac. J. Trop. Dis. 2014, 4(3), 213–222. DOI: 10.1016/S2222-1808(14)60509-0.
  • Jayakumar, T.; Hsieh, C.-Y.; Lee, -J.-J.; Sheu, J.-R. Experimental and Clinical Pharmacology of Andrographis Paniculata and Its Major Bioactive Phytoconstituent Andrographolide. Evid. Based Complement. Alternat. Med. 2013, 846740, 16. DOI: 10.1155/2013/846740.
  • Barceloux, D. G.;. Nutmeg (myristica Fragrans Houtt.). Dis. Mon. 2009, 55(6), 373–379. DOI: 10.1016/j.disamonth.2009.03.007.
  • National Essential Drug List 2013. 2013. List of Herbal Medicine Products. http://drug.fda.moph.go.th:81/nlem.in.th/medicine/herbal/list
  • Yamazaki, K.; Hashimoto, A.; Kokusenya, Y.; Miyamoto, T.; Sato, T. Electrochemical Method for Estimating the Antioxidative Effect of Methanol Extracts of Crude Drugs. Chem. Pharm. Bull. 1994, 42, 1663–1665. DOI: 10.1248/cpb.42.1663.
  • Odubanjo, V. O.; Olasehinde, T. A.; Oyeleye, S. I.; Oboh, G.; Boligon, A. A. Seed Extracts from Myristica Fragrans (nutmeg) and Moringa Oleifera (drumstick Tree) Inhibits Enzymes Relevant to Erectile Dysfunction and Metal‐induced Oxidative Damage in Rats’ Penile Tissues. J. Food Biochem. 2018, 42, e12452. DOI: 10.1111/jfbc.12452.
  • Kareem, M. A.; Gadhamsetty, S. K.; Shaik, A. H.; Prasad, E. M.; Kodidhela, L. D. Protective Effect of Nutmeg Aqueous Extract against Experimentally-induced Hepatotoxicity and Oxidative Stress in Rats. J. Ayurveda. Integr. Med. 2013, 4(4), 216–223. DOI: 10.4103/0975-9476.123704.
  • Dzotam, J. K.; Simo, I. K.; Bitchagno, G.; Celik, I.; Sandjo, L. P.;, et al. In Vitro Antibacterial and Antibiotic Modifying Activity of Crude Extract, Fractions and 3ʹ,4ʹ,7-trihydroxyflavone from Myristica Fragrans Houtt against MDR Gram-negative Enteric Bacteria. BMC Complement. Altern. Med. 2018, 18(1), 15. DOI: 10.1186/s12906-018-2084-1.
  • Pillai, S.; Mahmud, R.; Lee, W. C.; Perumal, S. Anti-parasitic Activity of Myristica Fragrans Houtt. Essential Oil against Toxoplasma Gondii Parasite. APCBEE Procedia. 2012, 2, 92–96. DOI: 10.1016/j.apcbee.2012.06.017.
  • Kwon, H. S.; Kim, M. J.; Jeong, H. J.; Yang, M. S.; Park, K. H.; Jeong, T. S.; Lee, W. S. Low-density Lipoprotein (ldl)-antioxidant Lignans from Myristica Fragrans Seeds. Bioorg. Med. Chem. Lett. 2008, 18(1), 194–198. DOI: 10.1016/j.bmcl.2007.10.098.
  • Ram, A.; Lauria, P.; Gupta, R.; Sharma, V. N. Hypolipidaemic Effect of Myristica Fragrans Fruit Extract in Rabbits. J. Ethnopharmacol. 1996, 55(1), 49–53. DOI: 10.1016/s0378-8741(96)01473-0.
  • Cao, G. Y.; Xu, W.; Yang, X. W.; Gonzalez, F. J.; Li, F. New Neolignans from the Seeds of Myristica Fragrans that Inhibit Nitric Oxide Production. Food Chem. 2015, 173, 231–237. DOI: 10.1016/j.foodchem.2014.09.170.
  • Chung, J. Y.; Choo, J. H.; Lee, M. H.; Hwang, J. K. Anticariogenic Activity of Macelignan Isolated from Myristica Fragrans (nutmeg) against Streptococcus Mutans. Phytomedicine. 2006, 13(4), 261–266. DOI: 10.1016/j.phymed.2004.04.007.
  • Ozaki, Y.; Soedigdo, S.; Wattimena, Y. R.; Suganda, A. G. Antiinflammatory Effect of Mace, Aril of Myristica Fragrans Houtt., And Its Active Principles. Jpn. J. Pharmacol. 1989, 49(2), 155–163. DOI: 10.1254/jjp.49.155.
  • Checker, R.; Chatterjee, S.; Sharma, D.; Gupta, S.; Variyar, P.; Sharma, A.; Poduval, T. B. Immunomodulatory and Radioprotective Effects of Lignans Derived from Fresh Nutmeg Mace (myristica Fragrans) in Mammalian Splenocytes. Int. Immunopharmacol. 2008, 8(5), 661–669. DOI: 10.1016/j.intimp.2008.01.012.
  • Akinboro, A.; Bin Mohamed, K.; Asmawi, M. Z.; Yekeen, T. A. Antimutagenic Effects of Aqueous Fraction of Myristica Fragrans (houtt.) Leaves on Salmonella Typhimurium and Mus Musculus. Acta Biochim. Pol. 2014, 61(4), 779–785.
  • Anggakusuma, Y.; Hwang, J. K. Effects of Macelignan Isolated from Myristica Fragrans Houtt. On UVB-induced Matrix Metalloproteinase-9 and Cyclooxygenase-2 in HaCaT Cells. J. Dermatol. Sci. 2010, 57(2), 114–122. DOI: 10.1016/j.jdermsci.2009.10.005.
  • Lee, K. E.; Mun, S.; Pyun, H. B.; Kim, M. S.; Hwang, J. K. Effects of Macelignan Isolated from Myristica Fragrans (nutmeg) on Expression of Matrix Metalloproteinase-1 and Type I Procollagen in UVB-irradiated Human Skin Fibroblasts. Biol. Pharm. Bull. 2012, 35(10), 1669–1675. DOI: 10.1248/bpb.b12-00037.
  • Champasuri, S.; Itharat, A. Bioactivities of Ethanolic Extracts of Three Parts (wood, Nutmeg and Mace) from Myristica Fragrans Houtt. J. Med. Assoc. Thai. 2016, 99(Suppl 4), S124–30.
  • Lorian, V.;. Antibiotics In Laboratory Medicine, 4th ed.; Williams & Wilkins: Baltimore Maryland, 1996.
  • McNicholl, B. P.; McGrath, J. W.; Quinn, J. P. Development and Application of a Resazurin-based Biomass Activity Test for Activated Sludge Plant Management. Water Res. 2007, 41(1), 127–133. DOI: 10.1016/j.watres.2006.10.002.
  • Dechayont, B.; Hansakul, P.; Itharat, A. Comparison of Antimicrobial, Antioxidant Activities and Total Phenolic Content of Antidesma Thwaitesianum Fruit Extracts by Different Methods. J. Med. Assoc. Thai. 2012, 95(Suppl 1), S147–53.
  • Dechayont, B.; Itharat, A.; Phuaklee, P.; Chunthorng-Orn, J.; Juckmeta, T.; Prommee, N.; Nuengchamnong, N.; Hansakul, P. Antioxidant Activities and Phytochemical Constituents of Antidesma thwaitesianum Müll. Arg. Leaf Extracts. J. Integr. Med. 2017, 15(4), 310–319. DOI: 10.1016/S2095-4964(17)60334-0.
  • Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26(9–10), 1231–1237. DOI: 10.1016/s0891-5849(98)00315-3.
  • Li, C. J.; Trost, B. M. Green Chemistry for Chemical Synthesis. Proc. Natl. Acad. Sci. U. S. A. 2008, 105(36), 13197–13202. DOI: 10.1073/pnas.0804348105.
  • Welton, T.;. Solvents and Sustainable Chemistry. Proc. Math Phys. Eng. Sci. 2015, 471(2183), 20150502. DOI: 10.1098/rspa.2015.0502.
  • Che Sulaiman, I. S.; Basri, M.; Fard Masoumi, H. R.; Chee, W. J.; Ashari, S. E.; Ismail, M. Effects of Temperature, Time, and Solvent Ratio on the Extraction of Phenolic Compounds and the Anti-radical Activity of Clinacanthus Nutans Lindau Leaves by Response Surface Methodology. Chem. Cent. J. 2017, 11(1), 54. DOI: 10.1186/s13065-017-0285-1.
  • Efthymiopoulos, I.; Hellier, P.; Ladommatos, N.; Russo-Profili, A.; Eveleigh, A.; Aliev, A.; Kay, A.; Mills-Lamptey, B. Influence of Solvent Selection and Extraction Temperature on Yield and Composition of Lipids Extracted from Spent Coffee Grounds. Ind. Crops Prod. 2018, 119, 49–56. DOI: 10.1016/j.indcrop.2018.04.008.
  • Francis, S. K.; James, B.; Varughese, S.; Nair, M. S. Phytochemical Investigation on Myristica Fragrans Stem Bark. Nat. Prod. Res. 2018, 1–5. DOI: 10.1080/14786419.2018.1457670.
  • Singh, G.; Kapoor, I. P.; Singh, P.; de Heluani, C. S.; de Lampasona, M. P.; Catalan, C. A. Comparative Study of Chemical Composition and Antioxidant Activity of Fresh and Dry Rhizomes of Turmeric (curcuma Longa Linn.). Food Chem. Toxicol. 2010, 48(4), 1026–1031. DOI: 10.1016/j.fct.2010.01.015.
  • Sulaiman, S. F.; Ooi, K. L. Antioxidant and Anti Food-Borne Bacterial Activities of Extracts from Leaf and Different Fruit Parts of Myristica Fragrans Houtt. Food Control. 2012, 25, 533–536. DOI: 10.1016/j.foodcont.2011.11.005.
  • Lim, H. J.; Woo, K. W.; Lee, K. R.; Lee, S. K.; Kim, H. P. Inhibition of Proinflammatory Cytokine Generation in Lung Inflammation by the Leaves of Perilla Frutescens and Its Constituents. Biomol. Ther. 2014, 22(1), 62–67. DOI: 10.4062/biomolther.2013.088.
  • Naikodi, M. A.; Waheed, M. A.; Shareef, M. A.; Ahmad, M.; Nagaiah, K. “standardization of the Unani Drug - Myristica Fragrans Houtt. (javetri) - with Modern Analytical Techniques. Pharm. Methods. 2011, 2(2), 76–82. DOI: 10.4103/2229-4708.84438.
  • Carvalho, A. A.; Galdino, P. M.; Nascimento, M. V.; Kato, M. J.; Valadares, M. C.; Cunha, L. C.; Costa, E. A. Antinociceptive and Antiinflammatory Activities of Grandisin Extracted from Virola Surinamensis. Phytother Res. 2010, 24(1), 113–118. DOI: 10.1002/ptr.2882.
  • Cuong, T. D.; Hung, T. M.; Na, M.; Ha do, T.; Kim, J. C.; Lee, D.; Ryoo, S.; Lee, J. H.; Choi, J. S.; Min, B. S. Inhibitory Effect on NO Production of Phenolic Compounds from Myristica Fragrans. Bioorg. Med. Chem. Lett. 2011, 21(22), 6884–6887. DOI: 10.1016/j.bmcl.2011.09.021.
  • Birben, E.; Sahiner, U. M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative Stress and Antioxidant Defense. World Allergy Organ J. 2012, 5(1), 9–19. DOI: 10.1097/WOX.0b013e3182439613.
  • Kedare, S. B.; Singh, R. P. Genesis and Development of DPPH Method of Antioxidant Assay. J. Food Sci. Technol. 2011, 48(4), 412–422. DOI: 10.1007/s13197-011-0251-1.
  • Lehmann, J.; Martin, H. L. Improved Direct Determination of Alpha- and Gamma-tocopherols in Plasma and Platelets by Liquid Chromatography, with Fluorescence Detection. Clin. Chem. 1982, 28(8), 1784–1787.
  • Lü, J.-M.; Lin, P. H.; Yao, Q.; Chen, C. Chemical and Molecular Mechanisms of Antioxidants: experimental Approaches and Model Systems. J. Cell. Mol. Med. 2010, 14(4), 840–860. DOI: 10.1111/j.1582-4934.2009.00897.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.