186
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Seasonal Changes in Rigor Development and Flesh Texture of Wild Japanese Sea Bass (Lateolabrax japonicus)

, , &

References

  • Ando, M., Joka, M., Mochizuki, S., Satoh, K., Tsukamasa, Y., and Makinodan, Y. 2001. Influence of death struggle on the structural changes in chub mackerel muscle during chilled storage. Fish. Sci. 67: 744–751.
  • Ando, M., Toyohara, H., Shimizu, Y., and Sakaguchi, M. 1991. Post-mortem tenderization of fish muscle proceeds independently of resolution of rigor mortis. Nippon Suisan Gakk. 57: 1165–1169.
  • Ayala, M. D., García-Alcázar, A., Abdel, I., Ramírez-Zarzona, G., and López-Albors, O. 2010. Effect of thermal treatment on muscle tissue structure and ultrastructure of wild and farmed sea bass, Dicentrarchus labrax L. Aquacult. Int. 18: 1137–1149.
  • Buttkus, H. 1963. Red and white muscle of fish in relation to rigor mortis. J. Fish. Res. Board Can. 20: 45–58.
  • Cardoso, C. L., Mendes, R. O., Vaz-Pires, P., and Nunes, M. L. 2014. Effect of seasonal changes on the gelling properties of farmed sea bass (Dicentrarchus labrax). Food Sci. Technol. Int. 20: 45–54.
  • Chatelier, A., McKenzie, D. J., and Claireaux, G. 2005. Effects of changes in water salinity upon exercise and cardiac performance in the European seabass (Dicentrarchus labrax). Mar. Biol. 147: 855–862.
  • Dülger, N., Kumlu, M., Türkmen, S., Ölçülü, A., Eroldoğan, O. T., Yılmaz, H. A., and Öçal, N. 2012. Thermal tolerance of European sea bass (Dicentrarchus labrax) juveniles acclimated to three temperature levels. J. Therm. Biol. 37: 79–82.
  • Erdem, M. E., Baki, B., and Samsun, S. 2009. Fatty acid and amino acid compositions of culured and wild sea bass (Dicentrarchus labrax L., 1758) from different regions in Turkey. J. Anim. Veterinary Adv. 8: 1959–1963.
  • Erikson, U., Beyer, A. R., and Sigholt, T. 1997. Muscle high-energy phosphates and stress affect K-values during ice storage of Atlantic salmon (Salmo salar). J. Food Sci. 62: 43–47.
  • Fletcher, G. C., Hallett, I. C., Jerrett, A. R., and Holland, A. J. 1997. Changes in the fine structure of the myocommata – muscle fibre junction related to gaping in rested and exercised muscle from king salmon (Oncorhynchus tshawytscha). Lebensmittel-Wissenschaft und –Technologie 30: 246–252.
  • Fuentes, A., Fernández-Segovia, I., Serra, J. A., and Barat, J. M. 2010. Comparison of wild and cultured sea bass (Dicentrarchus labrax) quality. Food Chem. 119: 1514–1518.
  • Gatica, M. C., Monti, G., Gallo, C., Knowles, T. G., and Warriss, P. D. 2008. Effects of well-boat transportation on the muscle pH and onset of rigor mortis in Atlantic salmon. Veterinary Rec. 163: 111–116.
  • Gornik, S. G., Albalat, A., Atkinson, R. J. A., and Neil, D. M. 2009. Biochemical investigations into the absence of rigor mortis in the Norway lobster Nephrops norvegicus. J. Exp. Mar. Biol. Ecol. 373: 58–65.
  • Hirai, N., Tagawa, M., Kaneko, T., Seikai, T., and Tanaka, M. 1999. Distributional changes in branchial chloride cells during freshwater adaptation in Japanese sea bass Lateolabrax japonicas. Zool. Sci. 16: 43–49.
  • Hunt, A. Ö., Özkan, F., Engin, K., and Tekelioğlu, N. 2011. The effects of freshwater rearing on the whole body and muscle tissue fatty acid profile of the European sea bass (Dicentrarchus labrax). Aquacult. Int. 19: 51–61.
  • Inokuchi, M., Nakamura, M., Miyanishi, H., and Kaneko, T. 2015. Distributional changes in gill ionocytes in Japanese sea bass after transfer from seawater to fresh water. Proceedings: 9th International Congress of Comparative Physiology and Biochemistry, Jagiellonian University, Kraków, Poland, 33.
  • Jerrett, A. R. and Holland, A. J. 1998. Rigor tension development in excised “rested”, “partially exercised” and “exhausted” Chinook salmon white muscle. J. Food Sci. 63: 48–52.
  • Jerrett, A. R., Holland, A. J., and Cleaver, S. E. 1998. Rigor Contractions in “rested” and “partially exercised” Chinook salmon white muscle as affected by temperature. J. Food Sci. 63: 53–56.
  • Khan, A. W. and Frey, A. R. 1971. A simple method for following rigor mortis development in beef and poultry meat. Can. Inst. Food Technol. J. 4: 139–142.
  • Kiessling, A., Stien, L. H., Torslett, Ø., Suontama, J., and Slinde, E. 2006. Effect of pre– and post–mortem temperature on rigor in Atlantic salmon muscle as measured by four different techniques. Aquaculture 259: 390–402.
  • Korhonen, R. W., Lanier, T. C., and Giesbrecht, F. 1990. An evaluation of simple methods for following rigor development in fish. J. Food Sci. 55: 346–368.
  • Kristoffersen, S., Tobiassen, T., Steinsund, V., and Olsen, R. L. 2006. Slaughter stress, post-mortem muscle pH and rigor development in farmed Atlantic cod (Gadus morhua L.).Int. J. Food Sci. Technol. 41: 861–864.
  • Mitsuhashi, T., Kasai, M., and Hatae, K. 2002. Detection of giant myofibrillar proteins connectin and nebulin in fish meat by electrophoresis in 3–5% gradient sodium dodecyl sulfate polyacrylamide slab gels. J. Agr. Food Chem. 50: 7499–7503.
  • Mørkøre, T., Ruohonen, K., and Kiessling, A. 2009. Variation in texture of farmed Atlantic salmon (Salmo salar L). Relevance of muscle fiber cross-sectional area. J. Texture Stud. 40: 1–15.
  • Mørkøre, T., Rødbotten, M., Voigt, G., Fjæra, S. O., Kristiansen, I. Ø., and Manseth, E. 2010. Relevance of season and nucleotide catabolism on changes in fillet quality during chilled storage of raw Atlantic salmon (Salmo salar L.). Food Chem. 119: 1417–1425.
  • Naito, Y. 1986. Physiological saline. In: Illustrated Biology Data Book. Ishizu, J. (Ed.). Tokyo: Maruzen Publishing Inc. P. 746.
  • Nakayama, T., Liu D. J., and Ooi, A. 1992. Tension change of stressed and unstressed carp muscles in isometric rigor contraction and resolution. Nippon Suisan Gakk. 58: 1517–1522.
  • Nakayama, T., Toyoda, T., and Ooi, A. 1994. Physical property of carp muscle during rigor tension generation. Fish. Sci. 60: 717–721.
  • Nakayama, T., Toyoda, T., and Ooi, A. 1996a. Delay in rigor mortis of red sea bream by spinal cord destruction. Fish. Sci. 62: 478–482.
  • Nakayama, T., Goto, E., and Ooi, A. 1996b. Observation of characteristic muscle structure related to delay in red sea – bream rigor mortis by spinal cord destruction. Fish. Sci. 62: 977–984.
  • Nakayama, T., Matsuhisa, M., Yamaura, M., Sumiyoshiyama, T., and Ooi, A. 1997a. Delayed example in rigor mortis of spinal cord destroyed plaice detected by measurements of isotonic contraction and isometric tension. Fish. Sci. 63: 830–834.
  • Nakayama, T., Goto, E., and Ooi, A. 1997b. Microstructure and physical properties of red sea-bream muscles stored as a fillet and as a round. Fish. Sci. 63: 950–957.
  • Nakayama, T., Ooguch, N., and Ooi, A. 1999. Change in rigor mortis of red sea-bream dependent on season and killing method. Fish. Sci. 65: 284–290.
  • Nielsen, D. and Green, D. 2007. Developing a Quality Index grading tool for hybrid striped bass (Morone saxatilis x Morone chrysops) based on the Quality Index Method. Int. J. Food Sci. Technol. 42: 86–94.
  • Ozolina, K., Shiels, H. A., Ollivier, H., and Claireaux, G. 2016. Intraspecific individual variation of temperature tolerance associated with oxygen demand in the European sea bass (Dicentrarchus labrax). Conserv. Physiol. 4: 1–10.
  • Periago, M. J., Ayala, M. D., López-Albors, O., Abdel, I., Martínez, C., Garcia-Alcázar, A., Ros, G., and Gil, F. 2005. Muscle cellurarity and flesh quality of wild and farmed sea bass, Dicentrarchus labrax L. Aquaculture 249: 175–188.
  • Stien, L. H., Suontama, J., and Kiessling, A. 2006. Image analysis as a tool to quantify rigor contraction in pre–rigor filleted fillets. Comput. Electron Agric. 50: 109–120.
  • Taylor, R. G., Fjaera, S. O., and Skjervold, P. O. 2002. Salmon fillet texture is determined by myofiber – myofiber and myofiber – myocommata attachment. J. Food Sci. 67: 2067–2071.
  • Tulli, F., Fabbro, A., D’Agaro, E., Messina, M., Bongiorno, T., Venir, E., Lippe, G., Tibaldi, E., and Stecchini, M. L. 2015. The effect of slaughtering methods on actin degradation and on muscle quality attributes of farmed European sea bass (Dicentrarchus labrax). J. Food Sci. Technol. 52: 7182–7190.
  • Varsamos, S., Diaz, J. P., Charmantier, G., Flik, G., Blasco, C., and Connes, R. 2002. Branchial chloride cells in sea bass (Dicentrarchus labrax) adapted to fresh water, seawater, and doubly concentrated seawater. J. Exp. Zool. 293: 12–26.
  • Wang, H., Liceaga-Gesualdo, A. M., and Li-Chan, E. C. Y. 2003. Biochemical and physicochemical characteristics of muscle and natural actomyosin isolated from young Atlantic salmon (Salmo salar) fillets stored at 0 and 4°C. J. Food Sci. 68: 784–789.
  • Wang, P. A., Martinez, I., and Olsen, R. L. 2009. Myosin heavy chain degradation during post mortem storage of Atlantic cod (Gadus morhua L.). Food Chem. 115: 1228–1233.
  • Xu, J., Yan, B., Teng, Y., Lou, G., and Lu, Z. 2010. Analysis of nutrient composition and fatty acid profiles of Japanese sea bass Lateolabrax japonicus (Cuvier) reared in seawater and freshwater. J. Food Compos. Anal. 23: 401–405.
  • Yıldız, M., Şener, E., and Timur, M. 2007. Effects of variations in feed and seasonal changes on body proximate composition of wild and cultured sea bass (Dicentrarchus labrax L.). Turk. J. Fish. Aquat. Sci. 7: 45–51.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.