191
Views
3
CrossRef citations to date
0
Altmetric
Articles

Treptacantha abies-marina (S.G. Gmelin) Kützing: Characterization and Application as a Whole Food Ingredient

ORCID Icon, , ORCID Icon, ORCID Icon, , , , ORCID Icon, ORCID Icon & show all

References

  • Afonso C, Costa S, Cardoso C, Bandarra NM, Batista I, Coelho I, Castanheira I, Nunes ML. 2015. Evaluation of the risk/benefit associated to the consumption of raw and cooked farmed meagre based on the bioaccessibility of selenium, eicosapentaenoic acid and docosahexaenoic acid, total mercury, and methylmercury determined by an in vitro digestion model. Food Chem. 170:249–56.
  • Airanthi MW, Hosokawa M, Miyashita K. 2011. Comparative antioxidant activity of edible Japanese brown seaweeds. J Food Sci. 76(1):C104–C111.
  • Angell AR, Mata L, de Nys R, Paul NA. 2016. The protein content of seaweeds: a universal nitrogen-to-protein conversion factor of five. J Appl Phycol. 28:511–24.
  • Anson NM, Van den Berg R, Havenaar R, Bast A, Haenen GRMM. 2009. Bioavailability of ferulic acid is determined by its bioaccessibility. J Cereal Sci. 49:296–300.
  • AOAC. 2000. Official methods of analysis of the AOAC International. 17th ed ed. Gaithersburg (MD): Association of Analytical Communities.
  • Araújo RGO, Macedo SM, Korn MGA, Pimentel MF, Bruns RE, Ferreira SLC. 2008. Mineral composition of wheat flour consumed in Brazilian cities. J. Braz. Chem. Soc. 19(5):935–42.
  • Barreto C, Mendonça E, Gouveia V, Anjos C, Medeiros JS, Seca A, Neto AI. 2012. Macroalgae from S. Miguel Island as a potential source of antiproliferative and antioxidante products. Arquipelago. Life Mar Sci. 29:53–58.
  • Bello MO, Olabanji IO, Abdul-Hammed M, Okunade TD. 2013. Characterization of domestic onion wastes and bulb (Allium cepa L.): fatty acids and metal contents. Int Food Res J. 20(5):2153–58.
  • Benzie IF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239(1):70–76.
  • Bischof K, Gómez I, Molis M, Hanelt D, Karsten U, Lüder UH, Roleda MY, Zacher K, Wiencke C. 2006. Ultraviolet radiation shapes seaweed communities. Rev. Env. Sci. Biotechnol. 5:141.
  • Braune W, Guiry M. 2011. Seaweeds—A colour guide to common benthic green. In: Gatner ARG, editor. Brown and red algae of the world’s oceans. Liechtenstein: K.G. Verlag, Ruggell; p. 601.
  • Burri SCM, Ekholm A, Håkanson Å, Tornberg E, Rumpunen K. 2017. Antioxidant capacity and major phenolic compounds of horticultural plant materials not usually used. J. Funct. Foods. 38:119–27.
  • Caliceti M, Argese E, Sfriso A, Pavoni B. 2002. Heavy metal contamination in the seaweeds of the Venice lagoon. Chemosphere. 47:443–54.
  • Campos AM, Matos J, Afonso C, Gomes R, Bandarra NM, Cardoso C. 2019. Azorean macroalgae (Petalonia binghamiae, Halopteris scoparia and Osmundea pinnatifida) bioprospection: a study of fatty acid profiles and bioactivity. Int. J. Food Sci. Technol. 54(3):880–90.
  • Cardoso C, Afonso C, Lourenço H, Costa S, Nunes ML. 2015. Bioaccessibility assessment methodologies and their consequences for the risk-benefit evaluation of food. Trends Food Sci Technol. 41:5–23.
  • Dadorama S. 1996. Amino acids, peptides, and proteins. In: Fennema OR, editor. Food chemistry. 3rd ed. New York (NY, USA): Marcel Dekker Inc; p. pp. 321–429.
  • Farasat M, Khavari-Nejad RA, Nabavi SMB, Namjooyan F. 2013. Antioxidant properties of two edible green seaweeds from northern coasts of the Persian Gulf. Jundishapur J Nat Pharm Prod. 8(1):47–52.
  • Foo SC, Yusoff FM, Ismail M, Basri M, Yau SK, Khong NMH, Chan KW, Ebrahimi M. 2017. Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents. J Biotech. 241:175–83.
  • Francisco J, Cardoso C, Bandarra N, Brito P, Horta A, Pedrosa R, Gil MM, Delgado IM, Castanheira I, Afonso C. 2018. Bioaccessibility of target essential elements and contaminants from Fucus spiralis. J Food Comp Anal. 74:10–17.
  • Ganesan AR, Tiwari U, Rajauria G. 2019. Seaweed nutraceuticals and their therapeutic role in disease prevention. Food Sci Hum Wellness. 8:252–63.
  • Guiry MD. 2019. AlgaeBase. Ireland (Galway): Worldwide Electron Publ Natl Univ.
  • Hunt CD, Meacham SL. 2001. Aluminum, boron, calcium, copper, iron, magnesium, manganese, molybdenum, phosphorus, potassium, sodium, and zinc: concentrations in common western foods and estimated daily intakes by infants; toddlers; and male and female adolescents, adults, and seniors in the United States. J. Am. Diet Assoc. 101(9):1058–60.
  • Kabak B, Ozbey F. 2012. Assessment of the bioaccessibility of aflatoxins from various food matrices using an in vitro digestion model, and the efficacy of probiotic bacteria in reducing bioaccessibility. J Food Comp Anal. 27:21–31.
  • Kirdar SS, Toprak G, Güzel E. 2017. Determination of the mineral content in yogurt whey. Eur. Int. J. Sci. Technol. 6(3):26–34.
  • Kucner A, Papiewska A, Klewicki R, Sójka M, Klewicka E. 2014. Influence of thermal treatment on the stability of phenolic compounds and the microbiological quality of sucrose solution following osmotic dehydration of highbush blueberry fruits. Acta Sci Pol Technol Aliment. 13(1):79–88.
  • Lange KW, Hauser J, Nakamura Y, Kanaya S. 2015. Dietary seaweeds and obesity. Food Sci Hum Wellness. 4:87–96.
  • López A, Rico M, Rivero A, Suárez De Tangil M. 2011. The effects of solvents on the phenolic contents and antioxidant activity of Stypocaulon scoparium algae extracts. Food Chem. 125:1104–09.
  • Lorenzo JM, Agregán R, Munekata PES, Franco D, Carballo J, Şahin S, Lacomba R, Barba FJ. 2017. Proximate composition and nutritional value of three macroalgae: ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata. Mar Drugs. 15:360.
  • Ma Z, Lin L, Wu M, Yu H, Shang T, Zhang T, Zhao M. 2018. Total and inorganic arsenic contents in seaweeds: absorption, accumulation, transformation and toxicity. Aquaculture. 497:49–55.
  • Mandalari G, Vardakou M, Faulks R, Bisignano C, Martorana M, Smeriglio A, Trombetta D. 2016. Food matrix effects of polyphenol bioaccessibility from almond skin during simulated human digestion. Nutrients. 8(9):568.
  • Manev Z, Iliev A, Vachkova V. 2013. Chemical characterization of brown seaweed – cystoseira barbata. Bulg. J. Agr. Sci. 19((Suppl 1)):12–15.
  • Mhadhebi L, Mhadhebi A, Robert J, Bouraoui A. 2014. Antioxidant, anti-inflammatory and antiproliferative effects of aqueous extracts of three Mediterranean brown seaweeds of the genus Cystoseira. Ir. J. Pharm. Res. 13(1):207–20.
  • Miliauskas G, Venskutonis PR, Van Beek TA. 2004. Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chem. 85:231–37.
  • Montero L, Herrero M, Ibáñez A, Cifuentes A. 2014. Separation and characterization of phlorotannins from brown algae Cystoseira abies-marina by comprehensive two-dimensional liquid chromatography. Electrophoresis. 35(11):1644–51.
  • Moreira IN, Mourato MP, Reis R, Martins LL. 2015. Oxidative stress induced by cadmium and copper in Brassica rapa leaves: indicators of stress, oxidative damage, and antioxidant mechanisms. Comm Soil Sci Plant Anal. 46(19):2475–89.
  • Negro C, Aprile A, Luvisi A, Nicoli F, Nutricati E, Vergine M, Miceli A, Blando F, Sabella E, De Bellis L. 2019. Phenolic profile and antioxidant activity of Italian monovarietal extra virgin olive oils. Antioxid (Basel). 8(6):161.
  • Pereira L. 2016. Edible seaweeds of the world. Boca Raton (FL, USA): CRC Press, Taylor and Francis Group, LLC; p. 453.
  • Prior RL, Wu X, Schaich K. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem. 53:4290–302.
  • Rajauria G, Cornish L, Ometto F, Msuya FE, Villa R. 2015. Identification and selection of algae for food, feed, and fuel applications. In: seaweed sustainability. London Wall (UK): Academic Press. p. 315–345.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 26:1231–37.
  • Romarís-Hortas V, García-Sartal C, Barciela-Alonso MC, Domínguez-González R, Moreda-Piñeiro A, Bermejo-Barrera P. 2011. Bioavailability study using an in-vitro method of iodine and bromine in edible seaweed. Food Chem. 124:1747–52.
  • Rupérez P. 2002. Mineral content of edible marine seaweeds. Food Chem. 79(1):23–26.
  • Saint-Denis T, Goupy J. 2004. Optimization of a nitrogen analyser based on the dumas method. Analytica Chimica Acta. 515:191–98.
  • Salo-Väänänen PP, Koivistoinen PE. 1996. Determination of protein in foods: comparison of net protein and crude protein (N × 6. 25) Values. Food Chem. . 57(1):27–31.
  • Singleton VL, Rossi JA. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Viticult. 16:144–58.
  • Squadrone S, Brizio P, Battuello M, Nurra N, Sartor RM, Riva A, Staiti M, Benedetto A, Pessani D, Abete MC. 2018. Trace metal occurrence in Mediterranean seaweeds. Env Sci Poll Res. 25:9708–21.
  • Versantvoort CHM, Oomen AG, Van de Kamp E, Rompelberg CJ, Sips AJ. 2005. Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. Food Chem Toxicol. 43(1):31–40.
  • Vitali D, Dragojević IV, Šebečić B. 2008. Bioaccessibility of Ca, Mg, Mn and Cu from whole grain tea-biscuits: impact of proteins, phytic acids and polyphenols. Food Chem. 110:62–68.
  • Vizetto-Duarte C, Custódio L, Barreira L, da Silva MM, Rauter AP, Albericio F, Varela J. 2016. Proximate biochemical composition and mineral content of edible species from the genus Cystoseira in Portugal. Bot. Mar. 59(4):251–57.
  • Zubia M, Fabre MS, Kerjean V, Lann KL, Stiger-Pouvreau V, Fauchon M, Deslandes E. 2009. Antioxidant and antitumoural activities of some phaeophyta from brittany coasts. Food Chem. 116(3):693–701.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.