1,148
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Housing and Urban Heat: Assessing Risk Disparities

ORCID Icon, ORCID Icon &
Pages 1078-1099 | Received 21 Oct 2021, Accepted 20 Jun 2022, Published online: 21 Jul 2022

References

  • Balbus, J. M., & Malina, C. (2009). Identifying vulnerable subpopulations for climate change health effects in the United States. Journal of Occupational and Environmental Medicine, 51(1), 33–37. https://doi.org/10.1097/JOM.0b013e318193e12e
  • Baniassadi, A., & Sailor, D. J. (2018). Synergies and trade-offs between energy efficiency and resiliency to extreme heat–A case study. Building and Environment, 132, 263–272. ​​https://doi.org/10.1016/j.buildenv.2018.01.037
  • Berisha, V., Hondula, D., Roach, M., White, J. R., McKinney, B., Bentz, D., Mohamed, A., Uebelherr, J., & Goodin, K. (2017). Assessing adaptation strategies for extreme heat: A public health evaluation of cooling centers in Maricopa County, Arizona. Weather, Climate, and Society, 9(1), 71–80. https://doi.org/10.1175/WCAS-D-16-0033.1
  • Bird, S., & Hernández, D. (2012). Policy options for the split incentive: Increasing energy efficiency for low-income renters. Energy Policy, 48, 506–514. https://doi.org/10.1016/j.enpol.2012.05.053
  • Byrne, J., Ambrey, C., Portanger, C., Lo, A., Matthews, T., Baker, D., & Davison, A. (2016). Could urban greening mitigate suburban thermal inequity?: The role of residents’ dispositions and household practices. Environmental Research Letters, 11(9), 095014. https://doi.org/10.1088/1748-9326/11/9/095014
  • California Strategic Growth Council (2021). AHSC round 6 guidelines. https://www.hcd.ca.gov/grants-funding/active-funding/ahsc/docs/AHSC-Round-5-FY18-19-Guidelines.pdf
  • Chow, W. T. L., Chuang, W.-C., & Gober, P. (2012). Vulnerability to extreme heat in metropolitan Phoenix: Spatial, temporal, and demographic dimensions. The Professional Geographer, 64(2), 286–302. https://doi.org/10.1080/00330124.2011.600225
  • City of New York (2021). Cooling assistance benefit. NYC. https://access.nyc.gov/programs/cooling-assistance-benefit/
  • City of San José (2012). Tree canopy and land use classification. City of San José Enterprise GIS. https://gisdata-csj.opendata.arcgis.com/pages/tree-canopy-and-land-use-classification
  • City of San José (2020). Affordable rental housing. https://data.sanjoseca.gov/dataset/affordable-rental-housing1
  • Cohen, D. A., Fleming, B., McDonald, K., Noisecat, J. B., Graetz, N., Lample, K., Lillehei, X., Paul, M., & Bahanda, A. (2019). A Green New Deal for American public housing communities. Data for Progress. https://www.filesforprogress.org/reports/green-new-deal-public-housing-national.pdf
  • Conlon, K. C., Mallen, E., Gronlund, C. J., Berrocal, V. J., Larsen, L., & O’Neill, M. S. (2020). Mapping human vulnerability to extreme heat: A critical assessment of heat vulnerability indices created using principal components analysis. Environmental Health Perspectives, 128(9), 97001. https://doi.org/10.1289/EHP4030
  • Ellena, M., Breil, M., & Soriani, S. (2020). The heat-health nexus in the urban context: A systematic literature review exploring the socio-economic vulnerabilities and built environment characteristics. Urban Climate, 34, 100676. https://doi.org/10.1016/j.uclim.2020.100676
  • Founda, D., & Santamouris, M. (2017). Synergies between urban heat island and heat waves in Athens (Greece), during an extremely hot summer (2012). Scientific Reports, 7(1), 11. https://doi.org/10.1038/s41598-017-11407-6
  • Fraser, A. M., Chester, M. V., Eisenman, D., Hondula, D. M., Pincetl, S. S., English, P., & Bondank, E. (2017). Household accessibility to heat refuges: Residential air conditioning, public cooled space, and walkability. Environment and Planning B: Urban Analytics and City Science, 44(6), 1036–1055. https://doi.org/10.1177/0265813516657342
  • Gabbe, C. J., & Pierce, G. (2020). Extreme heat vulnerability of subsidized housing residents in California. Housing Policy Debate, 30(5), 843–860. https://doi.org/10.1080/10511482.2020.1768574
  • GHHI (2020). Air conditioning, heat vulnerability, and racial equity. Green & Healthy Homes Initiative. https://www.greenandhealthyhomes.org/wp-content/uploads/Air-Conditioning-Heat-Vulnerability-and-Racial-Equity.pdf
  • Gronlund, C. J. (2014). Racial and socioeconomic disparities in heat-related health effects and their mechanisms: A review. Current Epidemiology Reports, 1(3), 165–173. https://doi.org/10.1007/s40471-014-0014-4
  • Gronlund, C. J., & Berrocal, V. J. (2020). Modeling and comparing central and room air conditioning ownership and cold-season in-home thermal comfort using the American Housing Survey. Journal of Exposure Science & Environmental Epidemiology, 30(5), 814–823. https://doi.org/10.1038/s41370-020-0220-8
  • Harlan, S. L., Brazel, A. J., Prashad, L., Stefanov, W. L., & Larsen, L. (2006). Neighborhood microclimates and vulnerability to heat stress. Social Science & Medicine (1982), 63(11), 2847–2863. ​​https://doi.org/10.1016/j.socscimed.2006.07.030
  • Harlan, S. L., Declet-Barreto, J. H., Stefanov, W. L., & Petitti, D. B. (2013). Neighborhood effects on heat deaths: Social and environmental predictors of vulnerability in Maricopa County, Arizona. Environmental Health Perspectives, 121(2), 197–204. https://doi.org/10.1289/ehp.1104625
  • Hayden, M. H., Brenkert-Smith, H., & Wilhelmi, O. V. (2011). Differential adaptive capacity to extreme heat: A Phoenix, Arizona, case study. Weather, Climate, and Society, 3(4), 269–280. https://doi.org/10.1175/WCAS-D-11-00010.1
  • Heaviside, C., Vardoulakis, S., & Cai, X. M. (2016). Attribution of mortality to the urban heat island during heatwaves in the West Midlands, UK. Environmental Health, 15(S1), 49–59. https://doi.org/10.1186/s12940-016-0100-9
  • Hoffman, J. S., Shandas, V., & Pendleton, N. (2020). The effects of historical housing policies on resident exposure to intra-urban heat: A study of 108 U.S. urban areas. Climate, 8(1), 12. https://doi.org/10.3390/cli8010012
  • Jenerette, G. D., Harlan, S. L., Buyantuev, A., Stefanov, W. L., Declet-Barreto, J., Ruddell, B. L., Myint, S. W., Kaplan, S., & Li, X. (2016). Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix, AZ USA. Landscape Ecology, 31(4), 745–760. https://doi.org/10.1007/s10980-015-0284-3
  • Jesdale, B. M., Morello-Frosch, R., & Cushing, L. (2013). The racial/ethnic distribution of heat risk–related land cover in relation to residential segregation. Environmental Health Perspectives, 121(7), 811–817. https://doi.org/10.1289/ehp.1205919
  • Kenny, G. P., Flouris, A. D., Yagouti, A., & Notley, S. R. (2019). Towards establishing evidence-based guidelines on maximum indoor temperatures during hot weather in temperate continental climates. Temperature (Austin, Tex.), 6(1), 11–36. https://doi.org/10.1080/23328940.2018.1456257
  • Klinenberg, E. (2002). Heat wave: A social autopsy of disaster in Chicago. University of Chicago Press.
  • Kontokosta, C. E., Reina, V. J., & Bonczak, B. (2020). Energy cost burdens for low-income and minority households. Journal of the American Planning Association, 86(1), 17–89. https://doi.org/10.1080/01944363.2019.1647446
  • Kuhn, M. (2020). caret: Classification and regression training (R package version 6.0-86) [Computer software]. https://CRAN.R-project.org/package=caret
  • Kuminoff, N. V., Parmeter, C. F., & Pope, J. C. (2010). Which hedonic models can we trust to recover the marginal willingness to pay for environmental amenities? Journal of Environmental Economics and Management, 60(3), 145–160. https://doi.org/10.1016/j.jeem.2010.06.001
  • Laaidi, K., Zeghnoun, A., Dousset, B., Bretin, P., Vandentorren, S., Giraudet, E., & Beaudeau, P. (2012). The impact of heat islands on mortality in Paris during the August 2003 heat wave. Environmental Health Perspectives, 120(2), 254–259. https://doi.org/10.1289/ehp.1103532
  • Li, D., Sun, T., Liu, M., Yang, L., Wang, L., & Gao, Z. (2015). Contrasting responses of urban and rural surface energy budgets to heat waves explain synergies between urban heat islands and heat waves. Environmental Research Letters, 10(5), 054009–054010. https://doi.org/10.1088/1748-9326/10/5/054009
  • Lumley, T. (2020). survey: Analysis of complex survey samples (R package version 4.0) [Computer software]. https://cran.r-project.org/web/packages/survey/survey.pdf
  • Macintyre, H. L., & Heaviside, C. (2019). Potential benefits of cool roofs in reducing heat-related mortality during heatwaves in a European city. Environment International, 127, 430–441. https://doi.org/10.1016/j.envint.2019.02.065
  • Madrigano, J., Lane, K., Petrovic, N., Ahmed, M., Blum, M., & Matte, T. (2018). Awareness, risk perception, and protective behaviors for extreme heat and climate change in New York City. International Journal of Environmental Research and Public Health, 15(7), 1433. https://doi.org/10.3390/ijerph15071433
  • Mavrogianni, A., Wilkinson, P., Davies, M., Biddulph, P., & Oikonomou, E. (2012). Building characteristics as determinants of propensity to high indoor summer temperatures in London dwellings. Building and Environment, 55, 117–130. https://doi.org/10.1016/j.buildenv.2011.12.003
  • Meade, R. D., Akerman, A. P., Notley, S. R., McGinn, R., Poirier, P., Gosselin, P., & Kenny, G. P. (2020). Physiological factors characterizing heat-vulnerable older adults: A narrative review. Environment International, 144, 105909.
  • Mitchell, B. C., & Chakraborty, J. (2014). Urban heat and climate justice: A landscape of thermal inequity in Pinellas County, Florida. Geographical Review, 104(4), 459–480. https://doi.org/10.1111/j.1931-0846.2014.12039.x
  • Mitchell, B. C., & Chakraborty, J. (2015). Landscapes of thermal inequity: Disproportionate exposure to urban heat in the three largest U.S. cities. Environmental Research Letters, 10(11), 115005. https://doi.org/10.1088/1748-9326/10/11/115005
  • Murray, A. G., & Mills, B. F. (2014). The impact of low-income home energy assistance program participation on household energy insecurity. Contemporary Economic Policy, 32(4), 811–825. https://doi.org/10.1111/coep.12050
  • Nahlik, M. J., Chester, M. V., Pincetl, S. S., Eisenman, D., Sivaraman, D., & English, P. (2017). Building thermal performance, extreme heat, and climate change. Journal of Infrastructure Systems, 23(3), 04016043. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000349
  • National Weather Service (2018). Weather related fatality and injury statistics. https://www.weather.gov/hazstat/
  • NOAA (2020). Climate data online. National Oceanic and Atmospheric Administration. https://www.ncdc.noaa.gov/cdo-web/
  • O’Neill, M. S., Zanobetti, A., & Schwartz, J. (2005). Disparities by race in heat-related mortality in four U.S. cities: The role of air conditioning prevalence. Journal of Urban Health: bulletin of the New York Academy of Medicine, 82(2), 191–197. https://doi.org/10.1093/jurban/jti043
  • Ostro, B., Rauch, S., Green, R., Malig, B., & Basu, R. (2010). The effects of temperature and use of air conditioning on hospitalizations. American Journal of Epidemiology, 172(9), 1053–1061. https://doi.org/10.1093/aje/kwq231
  • Palm, J., & Reindl, K. (2018). Understanding barriers to energy-efficiency renovations of multifamily dwellings. Energy Efficiency, 11(1), 53–65. https://doi.org/10.1007/s12053-017-9549-9
  • Pearsall, H. (2017). Staying cool in the compact city: Vacant land and urban heating in Philadelphia, Pennsylvania. Applied Geography, 79, 84–92. https://doi.org/10.1016/j.apgeog.2016.12.010
  • Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644. https://doi.org/10.5194/hess-11-1633-2007
  • Perl, L. (2014). LIHEAP: Program and funding. Congressional Research Service. https://www.ncsl.org/portals/1/documents/cyf/liheapprogramfunding.pdf
  • Quandt, S. A., Wiggins, M. F., Chen, H., Bischoff, W. E., & Arcury, T. A. (2013). Heat index in migrant farmworker housing: Implications for rest and recovery from work-related heat stress. American Journal of Public Health, 103(8), e24–e26. https://doi.org/10.2105/AJPH.2012.301135
  • Quinn, A., Kinney, P., & Shaman, J. (2017). Predictors of summertime heat index levels in New York City apartments. Indoor Air, 27(4), 840–851. https://doi.org/10.1111/ina.12367
  • Ray, A., Wang, R., Nguyen, D., Martinez, J., Taylor, N., & Searcy, J. K. (2019). Household energy costs and the housing choice voucher program: Do utility allowances pay the bills? Housing Policy Debate, 29(4), 607–626. https://doi.org/10.1080/10511482.2019.1566158
  • Reid, C. E., O'Neill, M. S., Gronlund, C. J., Brines, S. J., Brown, D. G., Diez-Roux, A. V., & Schwartz, J. (2009). Mapping community determinants of heat vulnerability. Environmental Health Perspectives, 117(11), 1730–1736. https://doi.org/10.1289/ehp.0900683
  • Reina, V. J., & Kontokosta, C. (2017). Low hanging fruit? Regulations and energy efficiency in subsidized multifamily housing. Energy Policy, 106, 505–513. https://doi.org/10.1016/j.enpol.2017.04.002
  • Rigolon, A. (2016). A complex landscape of inequity in access to urban parks: A literature review. Landscape and Urban Planning, 153, 160–169. https://doi.org/10.1016/j.landurbplan.2016.05.017
  • Rogot, E., Sorlie, P. D., & Backlund, E. (1992). Air-conditioning and mortality in hot weather. American Journal of Epidemiology, 136(1), 106–116. https://doi.org/10.1093/oxfordjournals.aje.a116413
  • Rosenthal, J., Kinney, P., & Metzger, K. (2014). Intra-urban vulnerability to heat-related mortality in New York City, 1997–2006. Health & Place, 30, 45–60. https://doi.org/10.1016/j.healthplace.2014.07.014
  • Ruuhela, R., Votsis, A., Kukkonen, J., Jylhä, K., Kankaanpää, S., & Perrels, A. (2020). Temperature-related mortality in Helsinki compared to its surrounding region over two decades, with special emphasis on intensive heatwaves. Atmosphere, 12(1), 13–46. https://doi.org/10.3390/atmos12010046
  • Samuelson, H., Baniassadi, A., Lin, A., Izaga González, P., Brawley, T., & Narula, T. (2020). Housing as a critical determinant of heat vulnerability and health. The Science of the Total Environment, 720, 137296. https://doi.org/10.1016/j.scitotenv.2020.137296
  • Sanders, B., Ocasio-Cortez, A. (2021). The green new deal for Public Housing Act. https://www.sanders.senate.gov/wp-content/uploads/GND-PUBLIC-HOUSING-ACT-Section-by-Section-117th-FINAL.pdf
  • Shokry, G., Anguelovski, I., Connolly, J. J. T., Maroko, A., & Pearsall, H. (2022). “They didn’t see it coming”: Green resilience planning and vulnerability to future climate gentrification. Housing Policy Debate, 32(1), 211–235. https://doi.org/10.1080/10511482.2021.1944269
  • Stone, B., Mallen, E., Rajput, M., Broadbent, A., Krayenhoff, E. S., Augenbroe, G., & Georgescu, M. (2021). Climate change and infrastructure risk: Indoor heat exposure during a concurrent heat wave and blackout event in Phoenix, Arizona. Urban Climate, 36, 100787. https://doi.org/10.1016/j.uclim.2021.100787
  • Stone, B., Mallen, E., Rajput, M., Gronlund, C. J., Broadbent, A. M., Krayenhoff, E. S., Augenbroe, G., O’Neill, M. S., & Georgescu, M. (2021). Compound climate and infrastructure events: How electrical grid failure alters heat wave risk. Environmental Science & Technology, 55(10), 6957–6964. https://doi.org/10.1021/acs.est.1c00024
  • Taylor, J., Wilkinson, P., Davies, M., Armstrong, B., Chalabi, Z., Mavrogianni, A., Symonds, P., Oikonomou, E., & Bohnenstengel, S. I. (2015). Mapping the effects of urban heat island, housing, and age on excess heat-related mortality in London. Urban Climate, 14, 517–528. https://doi.org/10.1016/j.uclim.2015.08.001
  • Tsoulou, I., Andrews, C. J., He, R., Mainelis, G., & Senick, J. (2020). Summertime thermal conditions and senior resident behaviors in public housing: A case study in Elizabeth, NJ, USA. Building and Environment, 168, 106411. https://doi.org/10.1016/j.buildenv.2019.106411
  • Uejio, C. K., Wilhelmi, O. V., Golden, J. S., Mills, D. M., Gulino, S. P., & Samenow, J. P. (2011). Intra-urban societal vulnerability to extreme heat: The role of heat exposure and the built environment, socioeconomics, and neighborhood stability. Health & Place, 17(2), 498–507. https://doi.org/10.1016/j.healthplace.2010.12.005
  • United States Census Bureau (2017). American housing survey. http://www.census.gov/programs-surveys/ahs.html
  • U.S. Bureau of Labor Statistics. (2020). American time use survey. https://www.bls.gov/tus/
  • U.S. Census Bureau (2019). 2015–2019 American Community Survey 5-year estimates. U.S. Bureau of the Census. https://www.census.gov/programs-surveys/acs
  • U.S. Department of Energy (2015). Guide to determining climate regions by county. U.S. Department of Energy Building Technologies Office. https://www.energy.gov/sites/default/files/2015/10/f27/ba_climate_region_guide_7.3.pdf
  • U.S. Department of Housing and Urban Development. (2014). Climate change adaptation plan. U.S. Department of Housing & Urban Development. https://www.hud.gov/sites/documents/HUD2014CCADAPTPLAN.PDF
  • U.S. EPA (2006). Excessive heat events guidebook. https://www.epa.gov/sites/default/files/2016-03/documents/eheguide_final.pdf
  • U.S. EPA, & CDC (2016). Climate change and extreme heat: What you can do to prepare (EPA 430-R-16-061). U.S. Environmental Protection Agency (EPA) & Centers for Disease Control and Prevention (CDC). https://www.cdc.gov/climateandhealth/pubs/extreme-heat-guidebook.pdf
  • USGS (2021). Landsat data access. U.S. Geological Survey. https://www.usgs.gov/core-science-systems/nli/landsat/landsat-data-access?qt-science_support_page_related_con=0#qt-science_support_page_related_con
  • Voelkel, J., Hellman, D., Sakuma, R., & Shandas, V. (2018). Assessing vulnerability to urban heat: A study of disproportionate heat exposure and access to refuge by socio-demographic status in Portland, Oregon. International Journal of Environmental Research and Public Health, 15(4), 640. https://doi.org/10.3390/ijerph15040640
  • Walker, L. A. (2015). The cost of good intentions: Thermal discomfort in traditional public housing units with preset thermostats. Housing Policy Debate, 25(1), 152–178. https://doi.org/10.1080/10511482.2014.924024
  • White-Newsome, J. L., Sánchez, B. N., Jolliet, O., Zhang, Z., Parker, E. A., Dvonch, J. T., & O’Neill, M. S. (2012). Climate change and health: Indoor heat exposure in vulnerable populations. Environmental Research, 112, 20–27. https://doi.org/10.1016/j.envres.2011.10.008
  • Wilhelmi, O. V., & Hayden, M. H. (2010). Connecting people and place: A new framework for reducing urban vulnerability to extreme heat. Environmental Research Letters, 5(1), 014021. 014021. https://doi.org/10.1088/1748-9326/5/1/014021
  • Wilson, B. (2020). Urban heat management and the legacy of redlining. Journal of the American Planning Association, 86(4), 415–443. https://doi.org/10.1080/01944363.2020.1759127
  • Wilson, B., & Chakraborty, A. (2019). Mapping vulnerability to extreme heat events: Lessons from metropolitan Chicago. Journal of Environmental Planning and Management, 62(6), 1024–1065. https://doi.org/10.1080/09640568.2018.1462475
  • Wolch, J., Wilson, J. P., & Fehrenbach, J. (2005). Parks and park funding in Los Angeles: An equity-mapping analysis. Urban Geography, 26(1), 4–35. https://doi.org/10.2747/0272-3638.26.1.4
  • Wright, M. K., Hondula, D. M., Chakalian, P. M., Kurtz, L. C., Watkins, L., Gronlund, C. J., Larsen, L., Mallen, E., & Harlan, S. L. (2020). Social and behavioral determinants of indoor temperatures in air-conditioned homes. Building and Environment, 183, 107187. https://doi.org/10.1016/j.buildenv.2020.107187
  • Yardley, J., Sigal, R. J., & Kenny, G. P. (2011). Heat health planning: The importance of social and community factors. Global Environmental Change, 21(2), 670–679. https://doi.org/10.1016/j.gloenvcha.2010.11.010
  • Zillow (2022). San Jose home values. https://www.zillow.com/san-jose-ca/home-values/

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.