132
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Stochastic curtailment tests for phase II trial with time-to-event outcome using the concept of relative time in the case of non-proportional hazards

ORCID Icon & ORCID Icon
Pages 596-611 | Received 15 Apr 2022, Accepted 15 Jul 2023, Published online: 14 Aug 2023

References

  • Collett, D. 2015. Modelling survival data in medical research. CRC press. doi:10.1201/b18041.
  • Davis, B. R., and R. J. Hardy. 1994. Data monitoring in clinical trials: the case for stochastic curtailment. Journal of Clinical Epidemiology 47 (9):1033–1042. doi:10.1016/0895-4356(94)90119-8.
  • DeMets, D. L., and J. H. Ware. 1982. Asymmetric group sequential boundaries for monitoring clinical trials. Biometrika 69 (3):661. doi:10.1093/biomet/69.3.661.
  • Dignam, J. J., J. Bryant, H. S. Wieand, B. Fisher, and N. Wolmark. 1998. Early stopping of a clinical trial when there is evidence of no treatment benefit: Protocol B-14 of the national surgical adjuvant breast and bowel project. Controlled Clinical Trials 19 (6):575–588. doi:10.1016/S0197-2456(98)00041-5.
  • Dmitrienko, A., G. Molenberghs, C. Chuang-Stein, and W. Offen. 2017. Analysis of clinical trials using SAS: A practical guide. Cary, NC: SAS Institute.
  • Dmitrienko, A., and M.-D.-D. Wang. 2006. Bayesian predictive approach to interim monitoring in clinical trials. Statistics in Medicine 25 (13):2178–2195. doi:10.1002/sim.2204.
  • Fayers, P. M., D. Ashby, and M. K. B. Parmar. 2005. Monitoring: Bayesian data monitoring in clinical trials. Tutorials in Biostatistics, Statistical Methods in Clinical Studies 1:335–352. doi:10.1002/0470023678.CH3B.
  • Fernandes, R. M., J. H. van der Lee, and M. Offringa. 2009. A systematic review of the reporting of data monitoring committees’ roles, interim analysis and early termination in pediatric clinical trials. BMC Pediatrics 9 (1):1–16. doi:10.1186/1471-2431-9-77.
  • Freedman, L. S. 1982. Tables of the number of patients required in clinical trials using the logrank test. Statistics in Medicine 1 (2):121–129. doi:10.1002/sim.4780010204.
  • Halperin, M., K. K. Gordon Lan, J. H. Ware, N. J. Johnson, and D. L. DeMets. 1982. An aid to data monitoring in long-term clinical trials. Controlled Clinical Trials 3 (4):311–323. doi:10.1016/0197-2456(82)90022-8.
  • He, P., T. L. Lai, and Z. Su. 2015. Design of clinical trials with failure-time endpoints and interim analyses: an update after fifteen years. Contemporary Clinical Trials 45:103–112. doi:10.1016/j.cct.2015.05.018.
  • Jachno, K., S. Heritier, and R. Wolfe. 2019. Are non-constant rates and non-proportional treatment effects accounted for in the design and analysis of randomised controlled trials? A review of current practice. BMC Medical Research Methodology 19 (1):1–9. doi:10.1186/s12874-019-0749-1.
  • Jennison, C., and B. W. Turnbull. 1990. Statistical approaches to interim monitoring of medical trials: A review and commentary. Statistical Science. doi:10.1214/ss/1177012099.
  • Jennison, C., and B. W. Turnbull. 1999. Group sequential methods with applications to clinical trials. In Group sequential methods with applications to clinical trials. Chapman & Hall/CRC. 10.1201/9780367805326
  • Jiménez, J. L., V. Stalbovskaya, and B. Jones. 2019. Properties of the weighted log‐rank test in the design of confirmatory studies with delayed effects. Pharmaceutical Statistics 18 (3):287–303. doi:10.1002/pst.1923.
  • Kuehnapfel, A., F. Schwarzenberger, and M. Scholz. 2017. On the conditional power in survival time analysis considering cure fractions. The International Journal of Biostatistics 13 (1). doi:10.1515/ijb-2015-0073.
  • Kundu, M. G., S. Samanta, and S. Mondal. 2021. Conditional power, predictive power and probability of success in clinical trials with continuous, binary and time-to-event endpoints.
  • Kunzmann, K., M. J. Grayling, K. M. Lee, D. S. Robertson, K. Rufibach, and J. M. S. Wason. 2022. Conditional power and friends: the why and how of (un) planned, unblinded sample size recalculations in confirmatory trials. Statistics in Medicine 41 (5):877–890. doi:10.1002/sim.9288.
  • Lachin, J. M. 2005. A review of methods for futility stopping based on conditional power. Statistics in Medicine 24 (18):2747–2764. doi:10.1002/sim.2151.
  • Lachin, J. M., and M. A. Foulkes. 1986. Evaluation of sample size and power for analyses of survival with allowance for nonuniform patient entry, losses to follow-up, noncompliance, and stratification. Biometrics 42 (3):507. doi:10.2307/2531201.
  • Lakatos, E. 1988. Sample sizes based on the log-rank statistic in complex clinical trials. Biometrics 44 (1):229–241. doi:10.2307/2531910.
  • Lan, K. K. G., P. Hu, and M. A. Proschan. 2009. A conditional power approach to the evaluation of predictive power. Statistics in Biopharmaceutical Research 1 (2):131–136. doi:10.1198/sbr.2009.0035.
  • Lan, K. K. G., R. Simon, and M. Halperin. 1982. Stochastically curtailed tests in long-term clinical-trials. Communications in Statistics: Part C: Sequential Analysis 1 (3):207–219. doi:10.1080/07474948208836014.
  • Lan, K. K. G., R. Simon, and M. Halperin. 2007. Stochastically curtailed tests in long–term clinical trials. Communications in Statistics: Part C: Sequential Analysis 1 (3):207–219. doi:10.1080/07474948208836014.
  • Magirr, D., T. Jaki, F. Koenig, M. Posch, and R. K. Hills. 2016. Sample size reassessment and hypothesis testing in adaptive survival trials. PloS One 11 (2):e0146465. doi:10.1371/journal.pone.0146465.
  • NCSS, L. 2015. Pass 14 power analysis and sample size software. Kaysville, Utah, USA.
  • Phadnis, M. A. 2019. Sample size calculation for small sample single-arm trials for time-to-event data: Logrank test with normal approximation or test statistic based on exact chi-square distribution?. Contemporary Clinical Trials Communications 15:100360. doi:10.1016/J.CONCTC.2019.100360.
  • Phadnis, M. A., and M. S. Mayo. 2020. Group sequential design for time-to-event data using the concept of proportional time. Statistical Methods in Medical Research 29 (7):1867–1890. doi:10.1177/0962280219876313.
  • Phadnis, M. A., and M. S. Mayo. 2021. Sample size calculation for two‐arm trials with time‐to‐event endpoint for nonproportional hazards using the concept of Relative Time when inference is built on comparing Weibull distributions. Biometrical Journal 63 (7):1406–1433. doi:10.1002/bimj.202000043.
  • Phadnis, M. A., P. Sharma, N. Thewarapperuma, and P. Chalise. 2020. Assessing accuracy of Weibull shape parameter estimate from historical studies for subsequent sample size calculation in clinical trials with time-to-event outcome. Contemporary Clinical Trials Communications 17:100548. doi:10.1016/J.CONCTC.2020.100548.
  • Phadnis, M. A., J. B. Wetmore, and M. S. Mayo. 2017. A clinical trial design using the concept of proportional time using the generalized gamma ratio distribution. Statistics in Medicine. 36 (26):4121–4140. doi:10.1002/sim.7421.
  • Pocock, S. J. 1977. Group sequential methods in the design and analysis of clinical trials. Biometrika 64 (2):191–199. doi:10.1093/biomet/64.2.191.
  • Proschan, M. A., K. K. G. Lan, and J. T. Wittes. 2006. Statistical monitoring of clinical trials: a unified approach. New York, USA: Springer Science & Business Media.
  • Royston, P., F. M. S. Barthel, M. K. B. Parmar, B. Choodari-Oskooei, and V. Isham. 2011. Designs for clinical trials with time-to-event outcomes based on stopping guidelines for lack of benefit. Trials 12 (1):1–18. doi:https://doi.org/10.1186/1745-6215-12-81.
  • Royston, P., and M. K. B. Parmar. 2014. An approach to trial design and analysis in the era of non-proportional hazards of the treatment effect. Trials 15 (1):1–10. doi:10.1186/1745-6215-15-314.
  • Royston, P., and M. K. B. Parmar. 2016. Augmenting the logrank test in the design of clinical trials in which non-proportional hazards of the treatment effect may be anticipated. BMC Medical Research Methodology 16 (1):1–13. doi:10.1186/s12874-016-0110-x.
  • Royston, P., and M. K. B. K. Parmar. 2013. Restricted mean survival time: an alternative to the hazard ratio for the design and analysis of randomized trials with a time-to-event outcome. BMC Medical Research Methodology 13 (1):1–15. doi:10.1186/1471-2288-13-152.
  • Rubinstein, L. 2014. Phase II design: history and evolution. Chinese Clinical Oncology 3 (4):48. doi:10.3978/j.issn.2304-3865.2014.02.02.
  • Spiegelhalter, D. J., K. R. Abrams, and J. P. Myles. 2004. Bayesian approaches to clinical trials and health-care evaluation. Hoboken, NJ. doi:10.1002/0470092602.
  • Spiegelhalter, D. J., L. S. Freedman, and P. R. Blackburn. 1986. Monitoring clinical trials: conditional or predictive power? Controlled Clinical Trials 7 (1):8–17. doi:10.1016/0197-2456(86)90003-6.
  • Spiegelhalter, D. J., L. S. Freedman, and M. K. B. Parmar. 1994. Bayesian approaches to randomized trials. Journal of the Royal Statistical Society: Series A (Statistics in Society) 157 (3):357. doi:10.2307/2983527.
  • Tharmanathan, P., M. Calvert, J. Hampton, and N. Freemantle. 2008. The use of interim data and data monitoring committee recommendations in randomized controlled trial reports: Frequency, implications and potential sources of bias. BMC Medical Research Methodology 8 (1):1–8. doi:10.1186/1471-2288-8-12.
  • Waleed, M., J. He, and M. A. Phadnis. 2021. Some design considerations incorporating early futility for single‐arm clinical trials with time‐to‐event primary endpoints using Weibull distribution. Pharmaceutical Statistics 20 (3):610–644. doi:10.1002/pst.2097.
  • Wan, F. 2017. Simulating survival data with predefined censoring rates for proportional hazards models. Statistics in Medicine 36 (5):838–854. doi:10.1002/SIM.7178.
  • Whitehead, J. 1999. A unified theory for sequential clinical trials. Statistics in Medicine 18 (17‐18):2271–2286. doi:10.1002/(SICI)1097-0258(19990915/30)18:17/18<2271:AID-SIM254>3.0.CO;2-Z.
  • Wu, J. 2015. Power and sample size for randomized phase III survival trials under the Weibull model. Journal of Biopharmaceutical Statistics 25 (1):16. doi:10.1080/10543406.2014.919940.
  • Wu, J., and X. Xiong. 2015. Group sequential design for randomized phase III trials under the Weibull model. Journal of biopharmaceutical statistics 25 (6):1190–1205. doi:https://doi.org/10.1080/10543406.2014.971165.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.