57
Views
0
CrossRef citations to date
0
Altmetric
DISTINGUISHED SCHOLAR

Plasticity of Addiction: A Mesolimbic Dopamine Short-Circuit?

, PhD, , PhD & , PhD
Pages 259-271 | Received 12 Dec 2008, Accepted 04 Mar 2009, Published online: 10 Jul 2009

REFERENCES

  • American Psychiatric Association. Diagnostic and statistical manual on mental disorders, 4th ed. American Psychiatric Association Press, Washington, DC 1994
  • Schultz W, Dayan P, Montague P R. A neural substrate of prediction and reward. Science 1997; 275: 1593–1599
  • Fallon J H, Moore R Y. Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum. J Comp Neurol 1978; 180: 545–580
  • Fields H L, Hjelmstad G O, Margolis E B, Nicola S M. Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu Rev Neurosci 2007; 30: 289–316
  • Kauer J A. Learning mechanisms in addiction: synaptic plasticity in the ventral tegmental area as a result of exposure to drugs of abuse. Annu Rev Physiol 2004; 66: 447–475
  • Thomas M J, Kalivas P W, Shaham Y. Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Br J Pharmacol 2008; 154: 327–342
  • Schultz W. Dopamine neurons and their role in reward mechanisms. Curr Opin Neurobiol 1997; 7: 191–197
  • Wise R A. Neurobiology of addiction. Curr Opin Neurobiol 1996; 6: 243–251
  • Montague P R, Berns G S. Neural economics and the biological substrates of valuation. Neuron 2002; 36: 265–284
  • Kelley A E, Berridge K C. The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci 2002; 22: 3306–3311
  • Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 1988; 85: 5274–5278
  • Wise R A, Rompre P P. Brain dopamine and reward. Annu Rev Psychol 1989; 40: 191–225
  • Bayer H M, Glimcher P W. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 2005; 47: 129–141
  • Ljungberg T, Apicella P, Schultz W. Responses of monkey dopamine neurons during learning of behavioral reactions. J Neurophysiol 1992; 67: 145–163
  • Schultz W, Apicella P, Ljungberg T. Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci 1993; 13: 900–913
  • Bunney B S, Walters J R, Roth R H, Aghajanian G K. Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single cell activity. J Pharmacol Exp Ther 1973; 185: 560–571
  • Grenhoff J, Ugedo L, Svensson T H. Firing patterns of midbrain dopamine neurons: differences between A9 and A10 cells. Acta Physiol Scand 1988; 134: 127–132
  • Wang R Y. Dopaminergic neurons in the rat ventral tegmental area. I. Identification and characterization. Brain Res Rev 1981; 3: 123–140
  • Freeman A S, Bunney B S. Activity of A9 and A10 dopaminergic neurons in unrestrained rats: further characterization and effects of apomorphine and cholecystokinin. Brain Res 1987; 405: 46–55
  • Marinelli M, Rudick C N, Hu X T, White F J. Excitability of dopamine neurons: modulation and physiological consequences. CNS Neurol Disord Drug Targets 2006; 5: 79–97
  • Overton P G, Clark D. Burst firing in midbrain dopaminergic neurons. Brain Res Brain Res Rev 1997; 25: 312–334
  • Grillner P, Mercuri N B. Intrinsic membrane properties and synaptic inputs regulating the firing activity of the dopamine neurons. Behav Brain Res 2002; 130: 149–169
  • Murase S, Grenhoff J, Chouvet G, Gonon F G, Svensson T H. Prefrontal cortex regulates burst firing and transmitter release in rat mesolimbic dopamine neurons studied in vivo. Neurosci Lett 1993; 157: 53–56
  • Gariano R F, Groves P M. Burst firing induced in midbrain dopamine neurons by stimulation of the medial prefrontal and anterior cingulate cortices. Brain Res 1988; 462: 194–198
  • Tong Z Y, Overton P G, Clark D. Stimulation of the prefrontal cortex in the rat induces patterns of activity in midbrain dopaminergic neurons which resemble natural burst events. Synapse 1996; 22: 195–208
  • Georges F, Aston-Jones G. Activation of ventral tegmental area cells by the bed nucleus of the stria terminalis: a novel excitatory amino acid input to midbrain dopamine neurons. J Neurosci 2002; 22: 5173–5187
  • Lodge D J, Grace A A. The hippocampus modulates dopamine neuron responsivity by regulating the intensity of phasic neuron activation. Neuropsychopharmacology 2006; 31: 1356–1361
  • Chergui K, Charlety P J, Akaoka H, et al. Tonic activation of NMDA receptors causes spontaneous burst discharge of rat midbrain dopamine neurons in vivo. Eur J Neurosci 1993; 5: 137–144
  • Mereu G, Lilliu V, Casula A, et al. Spontaneous bursting activity of dopaminergic neurons in midbrain slices from immature rats: role of N-methyl-D-aspartate receptors. Neuroscience 1997; 77: 1029–1036
  • Suaud-Chagny M F, Chergui K, Chouvet G, Gonon F. Relationship between dopamine release in the rat nucleus accumbens and the discharge activity of dopaminergic neurons during local in vivo application of amino acids in the ventral tegmental area. Neuroscience 1992; 49: 63–72
  • Charlety P J, Grenhoff J, Chergui K, et al. Burst firing of mesencephalic dopamine neurons is inhibited by somatodendritic application of kynurenate. Acta Physiol Scand 1991; 142: 105–112
  • Meltzer L T, Christoffersen C L, Serpa K A. Modulation of dopamine neuronal activity by glutamate receptor subtypes. Neurosci Biobehav Rev 1997; 21: 511–518
  • White F J. Synaptic regulation of mesocorticolimbic dopamine neurons. Annu Rev Neurosci 1996; 19: 405–436
  • Gronier B, Rasmussen K. Activation of midbrain presumed dopaminergic neurones by muscarinic cholinergic receptors: an in vivo electrophysiological study in the rat. Br J Pharmacol 1998; 124: 455–464
  • Grace A A, Onn S P. Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro. J Neurosci 1989; 9: 3463–3481
  • Mueller A L, Brodie M S. Intracellular recording from putative dopamine-containing neurons in the ventral tegmental area of Tsai in a brain slice preparation. J Neurosci Methods 1989; 28: 15–22
  • Luthi A, McCormick D A. H-current: properties of a neuronal and network pacemaker. Neuron 1998; 21: 9–12
  • Robinson R B, Siegelbaum S A. Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 2003; 65: 453–480
  • Johnson S W, North R A. Two types of neurone in the rat ventral tegmental area and their synaptic inputs. J Physiol 1992; 450: 455–468
  • Cooper D C. The significance of action potential bursting in the brain reward circuit. Neurochem Int 2002; 41: 333–340
  • Lisman J E. Bursts as a unit of neural information: making unreliable synapses reliable. Trends Neurosci 1997; 20: 38–43
  • Chergui K, Suaud-Chagny M F, Gonon F. Nonlinear relationship between impulse flow, dopamine release and dopamine elimination in the rat brain in vivo. Neuroscience 1994; 62: 641–645
  • Gonon F G. Nonlinear relationship between impulse flow and dopamine released by rat midbrain dopaminergic neurons as studied by in vivo electrochemistry. Neuroscience 1988; 24: 19–28
  • Feltenstein M W, See R E. The neurocircuitry of addiction: an overview. Br J Pharmacol 2008; 154: 261–274
  • Johnson S W, North R A. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 1992; 12: 483–488
  • Leone P, Pocock D, Wise R A. Morphine-dopamine interaction: ventral tegmental morphine increases nucleus accumbens dopamine release. Pharmacol Biochem Behav 1991; 39: 469–472
  • Calabresi P, Lacey M G, North R A. Nicotinic excitation of rat ventral tegmental neurones in vitro studied by intracellular recording. Br J Pharmacol 1989; 98: 135–140
  • Grenhoff J, Aston-Jones G, Svensson T H. Nicotinic effects on the firing pattern of midbrain dopamine neurons. Acta Physiol Scand 1986; 128: 351–358
  • Grillner P, Svensson T H. Nicotine-induced excitation of midbrain dopamine neurons in vitro involves ionotropic glutamate receptor activation. Synapse 2000; 38: 1–9
  • Mansvelder H D, McGehee D S. Long-term potentiation of excitatory inputs to brain reward areas by nicotine. Neuron 2000; 27: 349–357
  • Jones S R, Garris P A, Wightman R M. Different effects of cocaine and nomifensine on dopamine uptake in the caudate-putamen and nucleus accumbens. J Pharmacol Exp Ther 1995; 274: 396–403
  • Wu Q, Reith M E, Kuhar M J, Carroll F I, Garris P A. Preferential increases in nucleus accumbens dopamine after systemic cocaine administration are caused by unique characteristics of dopamine neurotransmission. J Neurosci 2001; 21: 6338–6347
  • Venton B J, Seipel A T, Phillips P E, et al. Cocaine increases dopamine release by mobilization of a synapsin-dependent reserve pool. J Neurosci 2006; 26: 3206–3209
  • Cameron D L, Williams J T. Cocaine inhibits GABA release in the VTA through endogenous 5-HT. J Neurosci 1994; 14: 6763–6767
  • Shi W X, Pun C L, Zhou Y. Psychostimulants induce low-frequency oscillations in the firing activity of dopamine neurons. Neuropsychopharmacology 2004; 29: 2160–2167
  • Chergui K, Nomikos G G, Mathe J M, Gonon F, Svensson T H. Burst stimulation of the medial forebrain bundle selectively increase Fos-like immunoreactivity in the limbic forebrain of the rat. Neuroscience 1996; 72: 141–156
  • Cho D I, Quan W, Oak M H, Choi H J, Lee K Y, Kim K M. Functional interaction between dopamine receptor subtypes for the regulation of c-fos expression. Biochem Biophys Res Commun 2007; 357: 1113–1118
  • Yamada H, Kuroki T, Nakahara T, et al. The dopamine D1 receptor agonist, but not the D2 receptor agonist, induces gene expression of Homer 1a in rat striatum and nucleus accumbens. Brain Res 2007; 1131: 88–96
  • Swanson C J, Baker D A, Carson D, Worley P F, Kalivas P W. Repeated cocaine administration attenuates group I metabotropic glutamate receptor-mediated glutamate release and behavioral activation: a potential role for Homer. J Neurosci 2001; 21: 9043–9052
  • Szumlinski K K, Dehoff M H, Kang S H, et al. Homer proteins regulate sensitivity to cocaine. Neuron 2004; 43: 401–413
  • Marinelli M, White F J. Enhanced vulnerability to cocaine self-administration is associated with elevated impulse activity of midbrain dopamine neurons. J Neurosci 2000; 20: 8876–8885
  • Ji S P, Zhang Y, Van Cleemput J, et al. Disruption of PTEN coupling with 5-HT2C receptors suppresses behavioral responses induced by drugs of abuse. Nat Med 2006; 12: 324–329
  • Maillet J C, Zhang Y, Li X, Zhang X. PTEN-5-HT2C coupling: a new target for treating drug addiction. Prog Brain Res 2008; 172: 407–420
  • Borgland S L, Malenka R C, Bonci A. Acute and chronic cocaine-induced potentiation of synaptic strength in the ventral tegmental area: electrophysiological and behavioral correlates in individual rats. J Neurosci 2004; 24: 7482–7490
  • Faleiro L J, Jones S, Kauer J A. Rapid synaptic plasticity of glutamatergic synapses on dopamine neurons in the ventral tegmental area in response to acute amphetamine injection. Neuropsychopharmacology 2004; 29: 2115–2125
  • Saal D, Dong Y, Bonci A, Malenka R C. Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 2003; 37: 577–582
  • Thomas M J, Malenka R C. Synaptic plasticity in the mesolimbic dopamine system. Philos Trans R Soc Lond B Biol Sci 2003; 358: 815–819
  • Ungless M A, Whistler J L, Malenka R C, Bonci A. Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 2001; 411: 583–587
  • Nugent F S, Penick E C, Kauer J A. Opioids block long-term potentiation of inhibitory synapses. Nature 2007; 446: 1086–1090
  • Liu Q S, Pu L, Poo M M. Repeated cocaine exposure in vivo facilitates LTP induction in midbrain dopamine neurons. Nature 2005; 437: 1027–1031
  • Kauer J A, Malenka R C. Synaptic plasticity and addiction. Nat Rev Neurosci 2007; 8: 844–858
  • Hyman S E, Malenka R C, Nestler E J. Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 2006; 29: 565–598
  • Malenka R C, Bear M F. LTP and LTD: an embarrassment of riches. Neuron 2004; 44: 5–21
  • Collingridge G L, Kehl S J, McLennan H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol 1983; 334: 33–46
  • Lynch G, Larson J, Kelso S, Barrionuevo G, Schottler F. Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 1983; 305: 719–721
  • Malenka R C, Nicoll R A. Long-term potentiation–a decade of progress?. Science 1999; 285: 1870–1874
  • Bonci A, Malenka R C. Properties and plasticity of excitatory synapses on dopaminergic and GABAergic cells in the ventral tegmental area. J Neurosci 1999; 19: 3723–3730
  • Overton P G, Richards C D, Berry M S, Clark D. Long-term potentiation at excitatory amino acid synapses on midbrain dopamine neurons. Neuroreport 1999; 10: 221–226
  • Sarti F, Borgland S L, Kharazia V N, Bonci A. Acute cocaine exposure alters spine density and long-term potentiation in the ventral tegmental area. Eur J Neurosci 2007; 26: 749–756
  • Borgland S L, Taha S A, Sarti F, Fields H L, Bonci A. Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron 2006; 49: 589–601
  • Dong Y, Saal D, Thomas M, et al. Cocaine-induced potentiation of synaptic strength in dopamine neurons: behavioral correlates in GluRA (-/-) mice. Proc Natl Acad Sci USA 2004; 101: 14282–4287
  • Gutlerner J L, Penick E C, Snyder E M, Kauer J A. Novel protein kinase A-dependent long-term depression of excitatory synapses. Neuron 2002; 36: 921–931
  • Luu P, Malenka R C. Spike Timing-dependent long-term potentiation in ventral tegmental area dopamine cells requires PKC. J Neurophysiol 2008; 100: 533–538
  • Thomas M J, Beurrier C, Bonci A, Malenka R C. Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nat Neurosci 2001; 4: 217–1223
  • Bellone C, Luscher C. Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression. Nat Neurosci 2006; 9: 636–641
  • Isaac J T, Ashby M, McBain C J. The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron 2007; 54: 859–871
  • Bellone C, Luscher C. mGluRs induce a long-term depression in the ventral tegmental area that involves a switch of the subunit composition of AMPA receptors. Eur J Neurosci 2005; 21: 1280–1288
  • Mameli M, Balland B, Lujan R, Luscher C. Rapid synthesis and synaptic insertion of GluR2 for mGluR-LTD in the ventral tegmental area. Science 2007; 317: 530–533
  • Kushner S A, Dewey S L, Kornetsky C. The irreversible gamma-aminobutyric acid (GABA) transaminase inhibitor gamma-vinyl-GABA blocks cocaine self-administration in rats. J Pharmacol Exp Ther 1999; 290: 797–802
  • Brodie J D, Figueroa E, Dewey S L. Treating cocaine addiction: from preclinical to clinical trial experience with gamma-vinyl GABA. Synapse 2003; 50: 261–265
  • Peng X Q, Li X, Gilbert J G, et al. Gamma-vinyl GABA inhibits cocaine-triggered reinstatement of drug-seeking behavior in rats by a non-dopaminergic mechanism. Drug Alcohol Depend 2008; 97: 216–225
  • Backes E N, Hemby S E. Contribution of ventral tegmental GABA receptors to cocaine self-administration in rats. Neurochem Res 2008; 33: 459–467
  • Haney M, Hart C L, Foltin R W. Effects of baclofen on cocaine self-administration: opioid- and nonopioid-dependent volunteers. Neuropsychopharmacology 2006; 31: 1814–1821
  • Addolorato G, Leggio L, Agabio R, Colombo G, Gasbarrini G. Baclofen: a new drug for the treatment of alcohol dependence. Int J Clin Pract 2006; 60: 1003–1008
  • Pan B, Hillard C J, Liu Q S. Endocannabinoid signaling mediates cocaine-induced inhibitory synaptic plasticity in midbrain dopamine neurons. J Neurosci 2008; 28: 1385–1397
  • Brodie M S, Pesold C, Appel S B. Ethanol directly excites dopaminergic ventral tegmental area reward neurons. Alcohol Clin Exp Res 1999; 23: 1848–1852
  • Gallegos R A, Lee R S, Criado J R, Henriksen S J, Steffensen S C. Adaptive responses of gamma-aminobutyric acid neurons in the ventral tegmental area to chronic ethanol. J Pharmacol Exp Ther 1999; 291: 1045–1053
  • Xiao C, Zhang J, Krnjevic K, Ye J H. Effects of ethanol on midbrain neurons: role of opioid receptors. Alcohol Clin Exp Res 2007; 31: 1106–1113
  • Melis M, Camarini R, Ungless M A, Bonci A. Long-lasting potentiation of GABAergic synapses in dopamine neurons after a single in vivo ethanol exposure. J Neurosci 2002; 22: 2074–2082
  • Nowak K L, McBride W J, Lumeng L, Li T K, Murphy J M. Blocking GABA(A) receptors in the anterior ventral tegmental area attenuates ethanol intake of the alcohol-preferring P rat. Psychopharmacology 1998; 139: 108–116
  • Smith B R, Robidoux J, Amit Z. GABAergic involvement in the acquisition of voluntary ethanol intake in laboratory rats. Alcohol Alcohol 1992; 27: 227–231
  • Boyle A E, Segal R, Smith B R, Amit Z. Bidirectional effects of GABAergic agonists and antagonists on maintenance of voluntary ethanol intake in rats. Pharmacol Biochem Behav 1993; 46: 179–182
  • Stuber G D, Hopf F W, Hahn J, Cho S L, Guillory A, Bonci A. Voluntary Ethanol Intake Enhances Excitatory Synaptic Strength in the Ventral Tegmental Area. Alcohol Clin Exp Res 2008; 32: 1714–1720
  • Mansvelder H D, Keath J R, McGehee D S. Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron 2002; 33: 905–919
  • Di Matteo V, Pierucci M, Di Giovanni G, Benigno A, Esposito E. The neurobiological bases for the pharmacotherapy of nicotine addiction. Curr Pharm Des 2007; 13: 1269–1284
  • Ingersoll K S, Cohen J. Combination treatment for nicotine dependence: state of the science. Subst Use Misuse 2005; 40: 1923–1943; 2043–1928
  • Fagerstrom K, Hughes J. Varenicline in the treatment of tobacco dependence. Neuropsychiatr Dis Treat 2008; 4: 353–363
  • Rollema H, Coe J W, Chambers L K, Hurst R S, Stahl S M, Williams K E. Rationale, pharmacology and clinical efficacy of partial agonists of alpha4beta2 nACh receptors for smoking cessation. Trends Pharmacol Sci 2007; 28: 316–325
  • Boyce-Rustay J M, Holmes A. Ethanol-related behaviors in mice lacking the NMDA receptor NR2A subunit. Psychopharmacology 2006; 187: 455–466
  • Mead A N, Brown G, Le Merrer J, Stephens D N. Effects of deletion of gria1 or gria2 genes encoding glutamatergic AMPA-receptor subunits on place preference conditioning in mice. Psychopharmacology 2005; 179: 164–171
  • Mead A N, Zamanillo D, Becker N, Stephens D N. AMPA-receptor GluR1 subunits are involved in the control over behavior by cocaine-paired cues. Neuropsychopharmacology 2007; 32: 343–353
  • Ramsey A J, Laakso A, Cyr M, et al. Genetic NMDA receptor deficiency disrupts acute and chronic effects of cocaine but not amphetamine. Neuropsychopharmacology 2008; 33: 2701–2714
  • Engblom D, Bilbao A, Sanchis-Segura C, et al. Glutamate receptors on dopamine neurons control the persistence of cocaine seeking. Neuron 2008; 59: 497–508
  • Zweifel L S, Argilli E, Bonci A, Palmiter R D. Role of NMDA receptors in dopamine neurons for plasticity and addictive behaviors. Neuron 2008; 59: 486–496
  • Fitzgerald L W, Ortiz J, Hamedani A G, Nestler E J. Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents. J Neurosci 1996; 16: 274–282
  • Loftis J M, Janowsky A. Regulation of NMDA receptor subunits and nitric oxide synthase expression during cocaine withdrawal. J Neurochem 2000; 75: 2040–2050
  • Carlezon W A, Jr., Boundy V A, Haile C N, et al. Sensitization to morphine induced by viral-mediated gene transfer. Science 1997; 277: 812–814
  • Chen B T, Bowers M S, Martin M, et al. Cocaine but not natural reward self-administration nor passive cocaine infusion produces persistent LTP in the VTA. Neuron 2008; 59: 288–297
  • Stuber G D, Klanker M, de Ridder B, et al. Reward-predictive cues enhance excitatory synaptic strength onto midbrain dopamine neurons. Science 2008; 321: 1690–1692
  • Zhang X F, Hu X T, White F J, Wolf M E. Increased responsiveness of ventral tegmental area dopamine neurons to glutamate after repeated administration of cocaine or amphetamine is transient and selectively involves AMPA receptors. J Pharmacol Exp Ther 1997; 281: 699–706
  • Nicola S M, Surmeier J, Malenka R C. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 2000; 23: 185–215
  • Voorn P, Vanderschuren L J, Groenewegen H J, Robbins T W, Pennartz C M. Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci 2004; 27: 468–474
  • Martin M, Chen B T, Hopf F W, Bowers M S, Bonci A. Cocaine self-administration selectively abolishes LTD in the core of the nucleus accumbens. Nat Neurosci 2006; 9: 868–869
  • Wolf M E. The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog Neurobiol 1998; 54: 679–720
  • Wise R A. Drug-activation of brain reward pathways. Drug Alcohol Depend 1998; 51: 13–22
  • Carlezon W A, Jr., Thomas M J. Biological substrates of reward and aversion: A nucleus accumbens activity hypothesis. Neuropharmacology 2008; 56(Suppl 1)122–132
  • Volkow N D, Fowler J S, Wang G J, Swanson J M, Telang F. Dopamine in drug abuse and addiction: results of imaging studies and treatment implications. Arch Neurol 2007; 64: 1575–1579
  • McFarland K, Lapish C C, Kalivas P W. Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 2003; 23: 3531–3537
  • Pierce R C, Bell K, Duffy P, Kalivas P W. Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization. J Neurosci 1996; 16: 1550–1560
  • Reid M S, Berger S P. Evidence for sensitization of cocaine-induced nucleus accumbens glutamate release. Neuroreport 1996; 7: 1325–1329
  • Kalivas P W, Hu X T. Exciting inhibition in psychostimulant addiction. Trends Neurosci 2006; 29: 610–616
  • Kourrich S, Rothwell P E, Klug J R, Thomas M J. Cocaine experience controls bidirectional synaptic plasticity in the nucleus accumbens. J Neurosci 2007; 27: 7921–7928
  • Conrad K L, Tseng K Y, Uejima J L, et al. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 2008; 454: 118–121
  • Boudreau A C, Reimers J M, Milovanovic M, Wolf M E. Cell surface AMPA receptors in the rat nucleus accumbens increase during cocaine withdrawal but internalize after cocaine challenge in association with altered activation of mitogen-activated protein kinases. J Neurosci 2007; 27: 10621–10635
  • Boudreau A C, Wolf M E. Behavioral sensitization to cocaine is associated with increased AMPA receptor surface expression in the nucleus accumbens. J Neurosci 2005; 25: 9144–9151
  • Meister A. Methods for the selective modification of glutathione metabolism and study of glutathione transport. Methods Enzymol 1985; 113: 571–585
  • Baker D A, Xi Z X, Shen H, Swanson C J, Kalivas P W. The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci 2002; 22: 9134–9141
  • Baker D A, McFarland K, Lake R W, et al. Neuroadaptations in cystine-glutamate exchange underlie cocaine relapse. Nat Neurosci 2003; 6: 743–749
  • Moran M M, McFarland K, Melendez R I, Kalivas P W, Seamans J K. Cystine/glutamate exchange regulates metabotropic glutamate receptor presynaptic inhibition of excitatory transmission and vulnerability to cocaine seeking. J Neurosci 2005; 25: 6389–6393
  • Mardikian P N, LaRowe S D, Hedden S, Kalivas P W, Malcolm R J. An open-label trial of N-acetylcysteine for the treatment of cocaine dependence: a pilot study. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31: 389–394
  • Madayag A, Lobner D, Kau K S, et al. Repeated N-acetylcysteine administration alters plasticity-dependent effects of cocaine. J Neurosci 2007; 27: 13968–13976
  • Szumlinski K K, Lominac K D, Oleson E B, et al. Homer2 is necessary for EtOH-induced neuroplasticity. J Neurosci 2005; 25: 7054–7061
  • Gremel C M, Cunningham C L. Roles of the nucleus accumbens and amygdala in the acquisition and expression of ethanol-conditioned behavior in mice. J Neurosci 2008; 28: 1076–1084
  • Vanderschuren L J, De Vries T J, Wardeh G, Hogenboom F A, Schoffelmeer A N. A single exposure to morphine induces long-lasting behavioural and neurochemical sensitization in rats. Eur J Neurosci 2001; 14: 1533–1538
  • Murray F, Harrison N J, Grimwood S, Bristow L J, Hutson P H. Nucleus accumbens NMDA receptor subunit expression and function is enhanced in morphine-dependent rats. Eur J Pharmacol 2007; 562: 191–197
  • Glass M J, Lane D A, Colago E E, et al. Chronic administration of morphine is associated with a decrease in surface AMPA GluR1 receptor subunit in dopamine D1 receptor expressing neurons in the shell and non-D1 receptor expressing neurons in the core of the rat nucleus accumbens. Exp Neurol 2008; 210: 750–761
  • Kombian S B, Malenka R C. Simultaneous LTP of non-NMDA- and LTD of NMDA-receptor-mediated responses in the nucleus accumbens. Nature 1994; 368: 242–246
  • Dong Z, Cao J, Xu L. Opiate withdrawal modifies synaptic plasticity in subicular-nucleus accumbens pathway in vivo. Neuroscience 2007; 144: 845–854

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.