459
Views
36
CrossRef citations to date
0
Altmetric
Regular papers

A surrogate-based optimization method with RBF neural network enhanced by linear interpolation and hybrid infill strategy

, , &
Pages 406-429 | Received 03 Apr 2012, Accepted 15 Feb 2013, Published online: 02 Apr 2013

References

  • A.J. BookerJr. J.E. Dennis, P.D. Frank, D.B. Serafini, V. Torczon, and M.W. Trossete, A rigorous framework for optimization of expensive functions by surrogates, Struct. Multidiscip. Optim. 17 (1999), pp. 1–13. doi: 10.1007/BF01197708
  • D.S. Bromhead and D. Lowe, Multivariable functional interpolation and adaptive networks, Complex Syst. 2 (1988), pp. 321–355.
  • D.D. Cox and S. John, SDO: A statistical method for global optimization, in Multidisciplinary Design Optimization: State of the Art, N. Alexandrov and M.Y. Hussaini, eds., SIAM, Philadelphia, PA, 1997, pp. 315–329.
  • C. Currin, T. Mitchell, M.D. Morris, and D. Ylvisaker, Bayesian prediction of deterministic functions with applications to the design and analysis of computer experiments, J. Am. Stat. Assoc. 86 (1991), pp. 953–963. doi: 10.1080/01621459.1991.10475138
  • L.C.W. Dixon and G.P. Szegö, The global optimisation problem: An introduction, in Towards Global Optimization, L.C.W. Dixon and G.P. Szegö, eds., North-Holland, Amsterdam, 1978, pp. 1–15.
  • A.I.J. Forrester and A.J. Keane, Recent advances in surrogate-based optimization, Prog. Aerosp. Sci. 45 (2009), pp. 50–79. doi: 10.1016/j.paerosci.2008.11.001
  • M.N. Gibbs, Bayesian Gaussian processes for regression and classification, Ph.D. diss., University of Cambridge, 1997.
  • A.A. GiuntaJr. S.F. Wojtkiewicz, and M.S. Eldred, Overview of modern design of experiments methods for computational simulations, 41st Aerospace Sciences Meeting and Exhibit, Reno, NV, 2003.
  • T. Goel, R.T. Hafkta, and W. Shyy, Comparing error estimation measures for polynomial and Kriging approximation of noise-free functions, Struct. Multidiscip. Optim. 38 (2009), pp. 429–442. doi: 10.1007/s00158-008-0290-z
  • H.M. Gutmann, A radial basis function method for global optimization, J. Global Optim. 19 (2001), pp. 201–227. doi: 10.1023/A:1011255519438
  • C. Harpham, C.W. Dawson, and M.R. Brown, A review of genetic algorithms applied to training radial basis function networks, Neural Comput. Appl. 13 (2004), pp. 193–201. doi: 10.1007/s00521-004-0404-5
  • K. Holmström, An adaptive radial basis algorithm (ARBF) for expensive black-box global optimization, J. Global Optim. 41 (2008), pp. 447–464. doi: 10.1007/s10898-007-9256-8
  • K. Holmström, N. Quttineh, and M.M. Edvall, An adaptive radial basis algorithm (ARBF) for expensive black-box mixed-integer constrained global optimization, Optim. Eng. 9 (2008), pp. 311–339. doi: 10.1007/s11081-008-9037-3
  • D. Huang, T.T. Allen, W.I. Notz, and N. Zeng, Global optimization of stochastic black-box systems via sequential Kriging meta-models, J. Global Optim. 34 (2006), pp. 441–466. doi: 10.1007/s10898-005-2454-3
  • S. Jakobsson, M. Patriksson, J. Rudholm, and A. Wojciechowski, A method for simulation based optimization using radial basis functions, Optim. Eng. 11 (2010), pp. 501–532. doi: 10.1007/s11081-009-9087-1
  • R. Jin, W. Chen, and T.W. Simpson, Comparative studies of metamodeling techniques under multiple modeling criteria, Struct. Optim. 23 (2001), pp. 1–13. doi: 10.1007/s00158-001-0160-4
  • R. Jin, W. Chen, and A. Sudjianto, On sequential sampling for global metamodeling in engineering design, ASME 2002 Design Engineering Technical Conferences and Computer and Information in Engineering Conference, Montreal, Canada, 2002.
  • D.R. Jones, A taxonomy of global optimization methods based on response surfaces, J. Global Optim. 21 (2001), pp. 345–383. doi: 10.1023/A:1012771025575
  • D.R. Jones, M. Schonlau, and W.J. Welch, Efficient global optimization of expensive black-box functions, J. Global Optim. 13 (1998), pp. 455–492. doi: 10.1023/A:1008306431147
  • A.C. Keys and L.P. Rees, A sequential-design metamodeling strategy for simulation optimization, Comput. Oper. Res. 31 (2004), pp. 1911–1932. doi: 10.1016/S0305-0548(03)00146-1
  • J.P.C. Kleijnen, W. van Beers, and I. van Nieuwenhuyse, Expected improvement in efficient global optimization through bootstrapped Kriging, J. Global Optim. 54 (1) (2012), pp. 59–73. doi: 10.1007/s10898-011-9741-y
  • H.J. Kushner, A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise, J. Basic Eng. 86 (1964), pp. 97–106. doi: 10.1115/1.3653121
  • G. Li and S. Azarm, Maximum accumulative error sampling strategy for approximation of deterministic engineering simulations, 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Portsmouth, VA, 2006.
  • G. Li, S. Azarm, A. Farhang-Mehr, and A.R. Diaz, Approximation of multiresponse deterministic engineering simulations a dependent metamodeling approach, Struct. Multidiscip. Optim. 31 (2006), pp. 260–269. doi: 10.1007/s00158-005-0574-5
  • Y. Lin, F. Mistree, J.K. Allen, K. Tsui, and V.C.P. Chen, Sequential metamodeling in engineering design, The 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Albany, NY, 2004.
  • W. Liu, Development of gradient-enhanced Kriging approximations for multidisciplinary design optimization, Ph.D. diss., The University of Notre Dame, 2003.
  • J. Mockus, Application of Bayesian approach to numerical methods of global and stochastic optimization, J. Global Optim. 4 (1994), pp. 347–365. doi: 10.1007/BF01099263
  • S. Noman, S.M. Shamsuddin, and A.E. Hassanien, Hybrid learning enhancement of RBF network with particle swarm optimization, Foundations of Computational, Intelligence, Springer-Verlag, Berlin, 2009, pp. 381–397.
  • M. Orr, Optimising the Widths of Radial Basis Functions, 5th Brazilian Symposium on Neural Networks, Brazil, 1998.
  • J. Park and I.W. Sandberg, Universal approximation using radial basis function networks, Neural Comput. 3 (1991), pp. 246–257. doi: 10.1162/neco.1991.3.2.246
  • M.J.D. Powell, Radial basis function approximations to polynomials, 12th Biennial Numerical Analysis Conference, Dundee, 1987.
  • R.G. Regis, Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions, Comput. Oper. Res. 38 (2010), pp. 837–853. doi: 10.1016/j.cor.2010.09.013
  • R.G. Regis and C.A. Shoemaker, Constrained global optimization of expensive black box functions using radial basis functions, J. Global Optim. 31 (2005), pp. 153–171. doi: 10.1007/s10898-004-0570-0
  • R.G. Regis and C.A. Shoemaker, Improved strategies for radial basis function methods for global optimization, J. Global Optim. 37 (2007), pp. 113–135. doi: 10.1007/s10898-006-9040-1
  • B. Rutherford, A response-modeling approach to global optimization and OUU, Optim. Eng. 7 (2006), pp. 367–384. doi: 10.1007/s11081-006-9979-2
  • J. Sacks, W.J. Welch, T.J. Mitchell, and H.P. Wynn, Design and analysis of computer experiments, Stat. Sci. 4 (1989), pp. 409–423. doi: 10.1214/ss/1177012413
  • Y. Tenne and S.W. Armfield, A versatile surrogate-assisted memetic algorithm for optimization of computationally expensive functions and its engineering applications, in Success in Evolutionary Computation, Studies in Computational Intelligence Vol 92, Ang Yang, Yin Shan, and Lam Thu Bui, eds., Springer Berlin Heidelberg, Berlin, 2008, pp. 43–72.
  • J. Villemonteix, E. Vazquez, and E. Walter, An informational approach to the global optimization of expensive-to-evaluate functions, J. Global Optim. 44 (2009), pp. 509–534. doi: 10.1007/s10898-008-9354-2
  • J. Villemonteix, E. Vazquez, M. Sidorkiewicz, and E. Walter, Global optimization of expensive-to-evaluate functions: An empirical comparison of two sampling criteria, J. Global Optim. 43 (2009), pp. 373–389. doi: 10.1007/s10898-008-9313-y
  • J.R. Wertz and W.J. Larson, Space Mission Analysis and Design, 3rd ed., Microcosm Press, Hawthorne, CA, 1999.
  • W. Yao and X. Chen, A sequential radial basis function neural network modeling method based on partial cross validation error estimation, Fifth International Conference on Natural Computation, Tianjin, China, 2009.
  • W. Yao, X. Chen, and W. Luo, A gradient-based sequential radial basis function neural network modeling method, Neural Comput. Appl. 18 (2009), pp. 477–484. doi: 10.1007/s00521-009-0249-z
  • W. Yao, X. Chen, M. van Tooren, and Y. Wei, Euclidean distance and second derivative based widths optimization of radial basis function neural networks, 2010 International Joint Conference on Neural Networks, Barcelona, Spain, 2010.
  • W. Yao, J. Guo, X. Chen, and M. van Tooren, Utilizing uncertainty multidisciplinary design optimization for conceptual design of space systems, 8th Conference on Systems Engineering Research, Hoboken, NJ, 2010.
  • W. Yao, X. Chen, Y. Zhao, and M. van Tooren, Concurrent subspace width optimization method for RBF neural network modeling, IEEE Trans. Neural Netw. Learn. Syst. 23 (2012), pp. 247–259. doi: 10.1109/TNNLS.2011.2178560

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.