226
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

A non-monotone linear search algorithm with mixed direction on Stiefel manifold

, &
Pages 437-457 | Received 11 May 2017, Accepted 05 Dec 2017, Published online: 22 Jan 2018

References

  • P.A. Absil and J. Malick, Projection-like retractions on matrix manifolds, SIAM J. Optim. 22 (2012), pp. 135–158. doi: 10.1137/100802529
  • P.A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on matrix manifolds, Princeton University Press, Princeton, NJ, 2009.
  • J. Barzilai and J.M. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal. 8 (1988), pp. 141–148. doi: 10.1093/imanum/8.1.141
  • N. Boumal, B. Mishra, P.A. Absil, and R. Sepulchre, Manopt, a Matlab toolbox for optimization on manifolds, J. Mach. Learn. Res. 15 (2014), pp. 1455–1459.
  • O.S.D. Cedeño and H.F.O. Leon, Projected nonmonotone search methods for optimization with orthogonality constraints, Comput. Appl. Math. (2017), pp. 1–27. Available at https://doi.org/10.1007/s40314-017-0501-6.
  • Y.H. Dai and R. Fletcher, Projected Barzilai–Borwein methods for large-scale box-constrained quadratic programming, Numer. Math. 100 (2005), pp. 21–47. doi: 10.1007/s00211-004-0569-y
  • A. d'Aspremont, L. El Ghaoui, M.I. Jordan, and G.R.G. Lanckriet, A direct formulation for sparse PCA using semidefinite programming, SIAM Rev. 49 (2007), pp. 434–448. doi: 10.1137/050645506
  • A. Edelman, T.A. Arias, and S.T. Smith, The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl. 20 (1998), pp. 303–353. doi: 10.1137/S0895479895290954
  • L. Eldén and H. Park, A procrustes problem on the Stiefel manifold, Numer. Math. 82 (1999), pp. 599–619. doi: 10.1007/s002110050432
  • J. Francisco, F.V. Bazán, and M.W. Mendonça, Non-monotone algorithm for minimization on arbitrary domains with applications to large-scale orthogonal procrustes problem, Appl. Numer. Math. 112 (2017), pp. 51–64. doi: 10.1016/j.apnum.2016.09.018
  • J. De Bem Francisco and T. Martini, Spectral projected gradient method for the procrustes problem, TEMA (São Carlos) 15 (2014), pp. 83–96. doi: 10.5540/tema.2014.015.01.0083
  • G.H. Golub and C.F. Van Loan, Matrix computations, 1996.
  • I. Grubisi and R. Pietersz, Efficient rank reduction of correlation matrices, Linear Algebr. Appl. 422 (2007), pp. 629–653. doi: 10.1016/j.laa.2006.11.024
  • B. Iannazzo and M. Porcelli, The Riemannian Barzilai–Borwein method with nonmonotone line search and the matrix geometric mean computation, IMA J. Numer. Anal. (2017), p. drx015.
  • M. Joho and H. Mathis, Joint diagonalization of correlation matrices by using gradient methods with application to blind signal separation, in Sensor Array and Multichannel Signal Processing Workshop Proceedings, 2002, IEEE, Rosslyn, VA, 2002, pp. 273–277.
  • M. Journée, Y. Nesterov, P. Richtárik, and R. Sepulchre, Generalized power method for sparse principal component analysis, J. Mach. Learn. Res. 11 (2010), pp. 517–553.
  • E. Kokiopoulou, J. Chen, and Y. Saad, Trace optimization and eigenproblems in dimension reduction methods, Numer. Linear Algebra Appl. 18 (2011), pp. 565–602. doi: 10.1002/nla.743
  • R. Lai and S. Osher, A splitting method for orthogonality constrained problems, J. Sci. Comput. 58 (2014), pp. 431–449. doi: 10.1007/s10915-013-9740-x
  • Y.F. Liu, Y.H. Dai, and Z.Q. Luo, On the complexity of leakage interference minimization for interference alignment, in 2011 IEEE 12th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), June, IEEE, 2011, pp. 471–475.
  • J.H. Manton, Optimization algorithms exploiting unitary constraints, IEEE Trans. Signal Process. 50 (2002), pp. 635–650. doi: 10.1109/78.984753
  • R.M. Martin, Electronic Structure: Basic Theory and Practical Methods, Cambridge University Press, Cambridge, 2004.
  • J. Nocedal and S.J. Wright, Numerical Optimization, 2nd ed., Springer, New York, 2006.
  • R. Pietersz 4 and P.J.F. Groenen, Rank reduction of correlation matrices by majorization, Quant. Finan. 4 (2004), pp. 649–662. doi: 10.1080/14697680400016182
  • M. Raydan, The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem, SIAM J. Optim. 7 (1997), pp. 26–33. doi: 10.1137/S1052623494266365
  • R. Rebonato and P. Jäckel, The most general methodology to create a valid correlation matrix for risk management and option pricing purposes, J. Risk 2 (1999), pp. 17–27. doi: 10.21314/JOR.2000.023
  • Y. Saad, Numerical Methods for Large Eigenvalue Problems, Vol. 158, SIAM, Manchester, 1992.
  • P.H. Schönemann, A generalized solution of the orthogonal procrustes problem, Psychometrika 31 (1966), pp. 1–10. doi: 10.1007/BF02289451
  • A. Szabo and N.S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, 1st ed., Dover Publications, Inc., Mineola, 1996.
  • F.J. Theis, T.P. Cason, and P.A. Absil, Soft dimension reduction for ICA by joint diagonalization on the Stiefel manifold, in Independent Component Analysis and Signal Separation, T. Adali, C. Jutten, J.M.T. Romano and A.K. Barros, eds., Springer, Berlin, 2009, pp. 354–361.
  • Z. Wen and W. Yin, A feasible method for optimization with orthogonality constraints, Math. Program. 142 (2013), pp. 397–434. doi: 10.1007/s10107-012-0584-1
  • C. Yang, J.C. Meza, and L.W. Wang, A constrained optimization algorithm for total energy minimization in electronic structure calculations, J. Comput. Phys. 217 (2006), pp. 709–721. doi: 10.1016/j.jcp.2006.01.030
  • C. Yang, J.C. Meza, and L.W. Wang, A trust region direct constrained minimization algorithm for the Kohn–Sham equation, SIAM J. Sci. Comput. 29 (2007), pp. 1854–1875. doi: 10.1137/060661442
  • C. Yang, J.C. Meza, B. Lee, and L.W. Wang, KSSOLVoa MATLAB toolbox for solving the Kohn–Sham equations, ACM Trans. Math. Softw. 36 (2009), pp. 1–34. doi: 10.1145/1499096.1499099
  • H. Zhang and W.W. Hager, A nonmonotone line search technique and its application to unconstrained optimization, SIAM J. Optim. 14 (2004), pp. 1043–1056. doi: 10.1137/S1052623403428208
  • Z. Zhao, Z.J. Bai, and X.Q. Jin, A Riemannian Newton algorithm for nonlinear eigenvalue problems, SIAM J. Matrix Anal. Appl. 36 (2015), pp. 752–774. doi: 10.1137/140967994
  • H. Zou, T. Hastie, and R. Tibshirani, Sparse principal component analysis, J. Comput. Graph. Stat. 15 (2006), pp. 265–286. doi: 10.1198/106186006X113430

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.