131
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

A convergent Newton algorithm for computing Z-eigenvalues of an almost nonnegative irreducible tensor

, ORCID Icon &
Pages 377-393 | Received 29 Apr 2019, Accepted 16 Jul 2019, Published online: 07 Aug 2019

References

  • B.W. Bader and T.G. Kolda and others, MATLAB Tensor Toolbox, Version 3.0, 2018. Available at https://www.tensortoolbox.org.
  • S.R. Bulo and M. Pelillo, A generalization of the Motzkin–Straus theorem to hypergraphs, Optim. Lett. 3 (2009), pp. 187–198. doi: 10.1007/s11590-008-0100-y
  • K.C. Chang, K. Pearson and T. Zhang, Perron–Frobenius theorem for nonnegative tensors, Commu. Math. Sci. 6(2) (2008), pp. 507–520. doi: 10.4310/CMS.2008.v6.n2.a12
  • K.C. Chang, K. Pearson and T. Zhang, On eigenvalue problems of real symmetric tensors, J. Math. Anal. Appl. 350 (2009), pp. 416–422. doi: 10.1016/j.jmaa.2008.09.067
  • K.C. Chang, K. Pearson and T. Zhang, Some variational principles of the Z-eigenvalues for nonnegative tensors, Linear Algebra Appl. 438 (2013), pp. 4166–4182. doi: 10.1016/j.laa.2013.02.013
  • K.C. Chang and T. Zhang, On the uniqueness and nonuniqueness of the Z-eigenvector for transition probability tensors, J. Math. Anal. Appl. 408 (2013), pp. 525–540. doi: 10.1016/j.jmaa.2013.04.019
  • L. De Lathauwer, B. De Moor and J. Vandewalle, On the best rank-1 and rank-(R1, R2, RN) approximation of higher-order tensors, SIAM J. Matrix Anal. Appl. 21 (2000), pp. 1324–1342. doi: 10.1137/S0895479898346995
  • J.E. Dennis Jr. and J.J. More, Quasi-Newton methods, motivation and theory, SIAM Rev. 19 (1977), pp. 46–89. doi: 10.1137/1019005
  • E. Kofidis and P.A. Regalia, On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM J. Matrix Anal. Appl. 23 (2002), pp. 863–884. doi: 10.1137/S0895479801387413
  • T.G. Kolda and J.R. Mayo, Shifted power method for computing tensor eigenpairs, SIAM J. Matrix Anal. Appl. 32 (2011), pp. 1095–1124. doi: 10.1137/100801482
  • T.G. Kolda and J.R. Mayo, An adaptive shifted power methods for computing generalized tensor eigenpairs, SIAM J. Matrix Anal. Appl. 35 (2014), pp. 1563–1581. doi: 10.1137/140951758
  • G. Li, L. Qi and G. Yu, The Z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory, Numer. Linear Algebra Appl. 20 (2013), pp. 1001–1029. doi: 10.1002/nla.1877
  • L.H. Lim, Singular values and eigenvalues of tensors: A variational approach, Proceedings of 1st IEEE International Workshop on Computational Advances of Multi-tensor Adaptive Processing, 2005, pp. 129–132.
  • M. Ng, L. Qi and G. Zhou, Finding the largest eigenvalue of a non-negative tensor, SIAM J. Matrix Anal. Appl. 31 (2009), pp. 1090–1099. doi: 10.1137/09074838X
  • Q. Ni, L. Qi and F. Wang, An eigenvalue method for testing positive definiteness of a multivariate form, IEEE Trans. Autom. Control 53 (2008), pp. 1096–1107. doi: 10.1109/TAC.2008.923679
  • Q. Ni and L. Qi, A quadratically convergent algorithm for finding the largest eigenvalue of a nonnegative homogeneous polynomial map, J. Glob. Optim. 61 (2015), pp. 627–641. doi: 10.1007/s10898-014-0209-8
  • J. Nocedal and S.J. Wright, Numerical Optimization, Springer, New York, 1999.
  • L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput. 40 (2005), pp. 1302–1324. doi: 10.1016/j.jsc.2005.05.007
  • L. Qi and K.L. Teo, Multivariate polynomial minimization and its application in signal processing, J. Global Optim. 46 (2003), pp. 419–433. doi: 10.1023/A:1024778309049
  • L. Qi, F. Wang and Y. Wang, Z-eigenvalue methods for a global polynomial optimization problems, Math. Program. 118 (2009), pp. 301–316. doi: 10.1007/s10107-007-0193-6
  • L. Qi, G. Yu and E.X. Wu, Higher order positive semi-definite diffusion tensor imaging, SIAM J. Imaging Sci. 3 (2010), pp. 416–433. doi: 10.1137/090755138
  • W. Yang and Q. Ni, A cubically convergent method for solving the largest eigenvalue of a nonnegative irreducible tensor, Numer. Algor. 77(4) (2018), pp. 1183–1197. doi: 10.1007/s11075-017-0358-1
  • M. Zeng and Q. Ni, Quasi-Newton method for computing Z-eigenpairs of a symmetric tensor, Pacific J. Optim. 2 (2015), pp. 279–290.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.