310
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Stochastic polynomial optimization

, &
Pages 329-347 | Received 31 May 2019, Accepted 25 Jul 2019, Published online: 22 Aug 2019

References

  • F. Bastin, C. Cirillo, and P.L. Toint, Convergence theory for nonconvex stochastic programming with an application to mixed logit, Math. Program. 108(23) (2006), pp. 207–234. doi: 10.1007/s10107-006-0708-6
  • A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications, MPS-SIAM Series on Optimization, SIAM, Philadelphia, 2001.
  • G. Blekherman, P. Parrilo, and R. Thomas (eds.), Semidefinite Optimization and Convex Algebraic Geometry, MOS-SIAM Series on Optimization, SIAM, 2013.
  • S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
  • M. Branda, Sample approximation technique for mixed-integer stochastic programming problems with several chance constraints, Oper. Res. Lett. 40(3) (2012), pp. 207–211. doi: 10.1016/j.orl.2012.01.002
  • K. Chung, A Course in Probability Theory, Academic Press, 2001.
  • R. Curto and L. Fialkow, Truncated K-moment problems in several variables, J Oper. Theory 54 (2005), pp. 189–226.
  • M. Fu, eds., Handbook of Simulation Optimization, Vol. 216, Springer, New York, 2015.
  • S. Ghadimi and G. Lan, Stochastic first-and zeroth-order methods for nonconvex stochastic programming, SIAM J. Opt. 23(4) (2013), pp. 2341–2368. doi: 10.1137/120880811
  • S. Ghadimi, G. Lan, and H. Zhang, Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization, Math. Program. 155(1–2) (2016), pp. 267–305. doi: 10.1007/s10107-014-0846-1
  • J. Helton and J. Nie, Semidefinite representation of convex sets, Math. Program. Ser. A 122(1) (2010), pp. 21–64. doi: 10.1007/s10107-008-0240-y
  • J. Helton and J. Nie, A semidefinite approach for truncated K-moment problem, Found. Comput. Math. 12(6) (2012), pp. 851–881. doi: 10.1007/s10208-012-9132-x
  • D. Henrion and J. Lasserre, Detecting global optimality and extracting solutions in GloptiPoly, in Positive Polynomials in Control, D. Henrion and A. Garulli, eds., Lecture Notes in Control and Inform. Sci., 312, Springer, Berlin, 2005, pp. 293–310.
  • D. Henrion, J. Lasserre, and J. Löfberg, Gloptipoly 3: Moments, optimization and semidefinite programming, Optim. Methods Softw. 24(45) (2009), pp. 761–779. doi: 10.1080/10556780802699201
  • K. Judd, The law of large numbers with a continuum of iid random variables, Theory J. Econ. Theory. 35(1) (1985), pp. 19–25. doi: 10.1016/0022-0531(85)90059-6
  • E. Klerk and M. Laurent, On the Lasserre hierarchy of semidefinite programming relaxations of convex polynomial optimization problems, SIAM J. Optim. 21 (2011), pp. 824–832. doi: 10.1137/100814147
  • A. Kleywegt, A. Shapiro, and T. Mello, The sample average approximation method for stochastic discrete optimization, SIAM J. Optim. 12(2) (2002), pp. 479–502. doi: 10.1137/S1052623499363220
  • J. Lasserre, Global optimization with polynomials and the problem of moments, SIAM J. Optim. 11 (2001), pp. 796–817. doi: 10.1137/S1052623400366802
  • J. Lasserre, Convexity in semi-algebraic geometry and polynomial optimization, SIAM J. Optim. 19 (2009), pp. 1995–2014. doi: 10.1137/080728214
  • J. Lasserre, Introduction to Polynomial and Semi-Algebraic Optimization, Cambridge University Press, Cambridge, 2015.
  • J. Lasserre, M. Laurent, and P. Rostalski, Semidefinite characterization and computation of zero-dimensional real radical ideals, Found. Comput. Math. 8 (2008), pp. 607–647. doi: 10.1007/s10208-007-9004-y
  • M. Laurent, Semidefinite representations for finite varieties, Math. Program. 109 (2007), pp. 1–26. doi: 10.1007/s10107-004-0561-4
  • M. Laurent, Sums of squares, moment matrices and optimization over polynomials, in Emerging Applications of Algebraic Geometry of IMA Volumes in Mathematics and its Applications, M. Putinar and S. Sullivant, eds., Vol. 149, Springer, 2009, pp. 157–270.
  • J. Linderoth, A. Shapiro, and S. Wright, The empirical behavior of sampling methods for stochastic programming, Ann. Oper. Res. 142(1) (2006), pp. 215–241. doi: 10.1007/s10479-006-6169-8
  • J. Luedtke and S. Ahmed, A sample approximation approach for optimization with probabilistic constraints, SIAM J. Optim. 19(2) (2008), pp. 674–699. doi: 10.1137/070702928
  • J. Nie, Certifying convergence of Lasserre's hierarchy via flat truncation, Math. Program. Ser. A 142(1–2) (2013), pp. 485–510. doi: 10.1007/s10107-012-0589-9
  • J. Nie, Polynomial optimization with real varieties, SIAM J. Optim. 23(3) (2013), pp. 1634–1646. doi: 10.1137/120898772
  • J. Nie, Optimality conditions and finite convergence of Lasserre's hierarchy, Math. Program. Ser. A 146(12) (2014), pp. 97–121. doi: 10.1007/s10107-013-0680-x
  • J. Nie, The A-truncated K-moment problem, Found. Comput. Math. 14(6) (2014), pp. 1243–1276. doi: 10.1007/s10208-014-9225-9
  • J. Nie, Linear optimization with cones of moments and nonnegative polynomials, Math. Program. Ser. B 153(1) (2015), pp. 247–274. doi: 10.1007/s10107-014-0797-6
  • P. Parrilo, Semidefinite programming relaxations for semialgebraic problems, Math. Program. Ser. B 96(2) (2003), pp. 293–320. doi: 10.1007/s10107-003-0387-5
  • P. Parrilo and B. Sturmfels, Minimizing polynomial functions, in Algorithmic and Quantitative Real Algebraic Geometry (Piscataway, NJ, 2001), S. Basu and L. Gonzalez-Vega, eds., DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 60, American Mathematical Society, Providence, RI, 2003, pp. 83–99.
  • E. Plambeck, B. Fu, S. Robinson, and R. Suri, Sample-path optimization of convex stochastic performance functions, Math. Program. 75(2) (1996), pp. 137–176. doi: 10.1007/BF02592150
  • M. Putinar, Positive polynomials on compact semi-algebraic sets, Ind. Univ. Math. J. 42 (1993), pp. 969–984. doi: 10.1512/iumj.1993.42.42045
  • S. Robinson, Analysis of sample-path optimization, Math. Oper. Res. 21(3) (1996), pp. 513–528. doi: 10.1287/moor.21.3.513
  • T. Santoso, S. Ahmed, M. Goetschalckx, and A. Shapiro, A stochastic programming approach for supply chain network design under uncertainty, Eur. J. Oper. Res. 167(1) (2005), pp. 96–115. doi: 10.1016/j.ejor.2004.01.046
  • C. Scheiderer, Positivity and sums of squares: A guide to recent results, in Emerging Applications of Algebraic Geometry, M. Putinar and S. Sullivant, eds., IMA Volumes Math. Appl. Vol. 149, Springer, 2009, pp. 271–324.
  • S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan, Stochastic convex optimization, in 22nd Annual Conference on Learning Theory (COLT 2009), 2009.
  • A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lectures on Stochastic Programming: Modeling and Theory, SIAM, 2009.
  • J. Sturm, SeDuMi 1.02: A MATLAB toolbox for optimization over symmetric cones, Optim. Methods Softw. 11&12 (1999), pp. 625–653. Available at http://sedumi.mcmaster.ca/. doi: 10.1080/10556789908805766
  • B. Verweij, S. Ahmed, A. Kleywegt, G. Nemhauser, and A. Shapiro, The sample average approximation method applied to stochastic routing problems: a computational study, Comput. Optim. Appl. 24(2–3) (2003), pp. 289–333. doi: 10.1023/A:1021814225969

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.