328
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

An efficient augmented Lagrangian method for support vector machine

&
Pages 855-883 | Received 17 Apr 2019, Accepted 12 Feb 2020, Published online: 04 Mar 2020

References

  • D. Basak, S. Pal, and D. Patranabis, Support vector regression, Neural Inform. Process. Lett. Rev. 11(10) (2007), pp. 203–224.
  • B.E. Boser, I.M. Guyon, and V.N. Vapnik, A training algorithm for optimal margin classifiers, COLT'92: Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory, Pittsburgh, PA, 27–29 July 1992, pp. 144–152.
  • O. Chapelle, Training a support vector machine in the primal, Neural Comput. 19(5) (2007), pp. 1155–1178. doi: 10.1162/neco.2007.19.5.1155
  • V.K. Chauhan, K. Dahiya, and A. Sharma, Problem formulations and solvers in linear SVM: A review, Artif. Intell. Rev. 52(2) (2019), pp. 803–855. doi:10.1007/s10462-018-9614-6.
  • F.H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, New York, 1933.
  • M. Collins, A. Globerson, T. Koo, X. Carreras, and P. Bartlett, Exponentiated gradient algorithms for conditional random elds and max-margin Markov networks, J. Mach. Learn. Res. 9 (2008), pp. 1775–1822.
  • C. Cortes and V.N. Vapnik, Support-vector networks, Mach. Learn. 20(3) (1995), pp. 273–297.
  • H. Drucker, C.J.C. Burges, L. Kaufman, A.J. Smola, and V.N. Vapnik, Support vector regression machines, Adv. Neural. Inf. Process. Syst. 28 (1997), pp. 779–784.
  • R. Fan, K. Chang, C. Hsieh, X. Wang and C. Lin, LIBLINEAR: A library for large linear classification, JMLR 9 (2008), pp. 1871–1874.
  • W. Gu, W.P. Chen, and C.H. Ko, Two smooth support vector machines for ε-insensitive regression, Comput. Optim. Appl. 70 (2018), pp. 1–29. doi: 10.1007/s10589-017-9975-9
  • M.R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bur. Stand. 49 (1952), pp. 409–436. doi: 10.6028/jres.049.044
  • C.H. Ho and C.-J. Lin, Large-scale linear support vector regression, J. Mach. Learn. Res. 13(Nov) (2012), pp. 3323–3348.
  • C.J. Hsieh, K.W. Chang, C.-J. Lin, S.S. Keerthi, and S. Sundararajan, A dual coordinate descent method for large-scale linear SVM, Proceedings of the 25th International Conference on Machine Learning, Helsinki, pp. 408–415.
  • N. Ito, A. Takeda and K.-C. Toh, A unified formulation and fast accelerated proximal gradient method for classification, JMLR 18(1) (2017), pp. 510–558.
  • T. Joachims, Making large-scale support vector machine learning practical, in Advances in Kernel Methods – Support Vector Learning, B. Scholkopf, C. Burges, and A. Smola, eds., MIT Press, Cambridge, MA, 1999, pp. 169–184.
  • T. Joachims, Training linear SVMs in linear time, Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, Philadelphia, 2006, pp. 217–226.
  • C. Kanzow, Inexact semismooth Newton methods for large-scale complementarity problems, Optim. Methods Softw. 19(3–4) (2004), pp. 309–325. doi: 10.1080/10556780310001636369
  • J. Kivinen, A.J. Smola, and R.C. Williamson, Online learning with kernels, IEEE Trans. Signal Process. 52(8) (2002), pp. 2165–2176. doi: 10.1109/TSP.2004.830991
  • Q.N. Li and H.-D. Qi, A sequential semismooth Newton method for the nearest low-rank correlation matrix problem, SIAM J. Optim. 21(4) (2011), pp. 1641–1666. doi: 10.1137/090771181
  • X.D. Li, D.F. Sun, and K.-C. Toh, A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems, SIAM J. Optim. 28(1) (2018), pp. 433–458. doi: 10.1137/16M1097572
  • Y.-J. Liu, D.F. Sun, and K.-C. Toh, An implementable proximal point algorithmic framework for nuclear norm minimization, Math. Program. 133(12) (2012), pp. 399–436. doi:10.1007/s10107-010-0437-8.
  • Z.Y. Luo, D.F. Sun, and K.-C. Toh, Solving the OSCAR and SLOPE models using a semismooth Newton-based augmented Lagrangian method, preprint (2018). Available at arXiv, math. OC/1803.10740.
  • R. Mifflin, Semismooth and semiconvex functions in constrained optimization, SIAM J. Control Optim. 15(6) (1977), pp. 959–972. doi: 10.1137/0315061
  • J.J. Moreau, Proximite dt dualite dans un espace hilbertien, Bulletin de la Societe Mathematique de France 93 (1965), pp. 273–299. doi: 10.24033/bsmf.1625
  • F. Nie, Y. Huang, X. Wang, and H. Huang, New primal SVM solver with linear computational cost for big data classifications, Proceedings of the 31st International Conference on Machine Learning, Beijing, Vol. 32, 2014, pp. II-505–II-513.
  • D. Niu, C. Wang, P. Tang, Q. Wang, and E. Song, A sparse semismooth Newton based augmented Lagrangian method for large-scale support vector machines, 2019. Available at arXiv, math. OC/1910.01312.
  • J.C. Platt, Fast training of support vector machines using sequential minimal optimization, in Advances in Kernel Methods – Support Vector Learning, B. Scholkopf, C. Burges, and A. Smola, eds., MIT Press, Cambridge, MA, 1998, pp. 185–208.
  • H.-D. Qi, A semismooth Newton method for the nearest Euclidean distance matrix problem, SIAM J. Matrix Anal. Appl. 34(1) (2013), pp. 67–93. doi: 10.1137/110849523
  • L. Qi and J. Sun, A nonsmooth version of Newton's method, Math. Program. 58(1–3) (1993), pp. 353–367. doi: 10.1007/BF01581275
  • H.-D. Qi and D.F. Sun, A quadratically convergent Newton method for computing the nearest correlation matrix, SIAM J. Matrix Anal. Appl. 28(2) (2006), pp. 360–385. doi: 10.1137/050624509
  • H.-D. Qi and X.M. Yuan, Computing the nearest Euclidean distance matrix with low embedding dimensions, Math. Program. 147(1–2) (2014), pp. 351–389. doi: 10.1007/s10107-013-0726-0
  • R.T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res. 1(2) (1976), pp. 97–116. doi: 10.1287/moor.1.2.97
  • R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14(5) (1976), pp. 877–898. doi: 10.1137/0314056
  • S. Shalev-Shwartz, Y. Singer, and N. Srebro, Pegasos: Primal estimated sub-gradient solver for SVM, International Conference on Machine Learning, Oregon State University, Corvallis, 2007.
  • A.J. Smola, Regression estimation with support vector learning machines, Master thesis, Technische Universität München, 1996.
  • A.J. Smola, S.V.N. Vishwanathan, and Q. Le, Bundle methods for machine learning, in Advances in Neural Information Processing Systems 20, J.C. Platt, D. Koller, Y. Singer, and S. Roweis, eds., MIT Press, Cambridge, MA, 2008, pp. 1377–1384.
  • J. Sun, On monotropic piecewise quadratic programming, PhD thesis, Department of Mathematics, University of Washington, 1986.
  • D.F. Sun and J. Sun, Semismooth matrix-valued functions, Math. Oper. Res. 27 (2002), pp. 150–169. doi: 10.1287/moor.27.1.150.342
  • D.F. Sun, K.-C. Toh, and L.Q. Yang, An efficient inexact ABCD method for least squares semidefinite programming, SIAM J. Optim. 26(2) (2016), pp. 1072–1100. doi: 10.1137/15M1021799
  • D.F. Sun, K.-C. Toh, and Y.C. Yuan, Convex clustering: Model, theoretical guarantee and efficient algorithm, preprint (2018). Available at arXiv, cs. LG/1810.02677.
  • D.F. Sun, K.-C. Toh, Y.C. Yuan, and X.Y. Zhao, SDPNAL+: A Matlab software for semidefinite programming with bound constraints (version 1.0), Optim. Methods Softw. (2019), pp. 1–29. Available at arXiv, math. OC/1710.10604.
  • M. Takáč, A. Bijral, P. Richtárik, and N. Srebro, Mini-batch primal and dual methods for SVMs, Proceedings of the 30th International Conference on Machine Learning, Atlanta, 2013.
  • L.Q. Yang, D.F. Sun, and K.-C. Toh, SDPNAL+: A majorized semismooth Newton-CG augmented Lagrangian method for semidefinite programming with nonnegative constraints, Math. Program. Comput. 7(3) (2015), pp. 331–366. doi: 10.1007/s12532-015-0082-6
  • J. Yin and Q.N. Li, A semismooth Newton method for support vector classification and regression, Comput. Optim. Appl. 73(2) (2019), pp. 477–508. doi:10.1007/s10589-019-00075-z.
  • K. Yosida, Functional Analysis, Springer Verlag, Berlin, 1964.
  • F.Z. Zhai and Q.N. Li, A Euclidean distance matrix model for protein molecular conformation, J. Global Optim. (2019). doi:10.1007/s10898-019-00771-4
  • T. Zhang, Solving large scale linear prediction problems using stochastic gradient descent algorithms, Proceedings of the 21th International Conference on Machine Learning, Banff, Alberta, 2004.
  • X.Y. Zhao, A semismooth Newton-CG augmented Lagrangian method for large scale linear and convex quadratic SDPS, Ph.D. diss., National University of Singapore, 2009.
  • X.Y. Zhao, D.F. Sun, and K.-C. Toh, A Newton-CG augmented Lagrangian method for semidefinite programming, SIAM J. Optim. 20 (2010), pp. 1737–1765. doi: 10.1137/080718206
  • P. Zhong and M. Fukushima, Regularized nonsmooth Newton method for multi-class support vector machines, Optim. Methods Softw. 22(1) (2007), pp. 225–236. doi: 10.1080/10556780600834745

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.