277
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

On SOR-like iteration methods for solving weakly nonlinear systems

&
Pages 320-337 | Received 13 Jul 2019, Accepted 10 Apr 2020, Published online: 20 Apr 2020

References

  • N. Aghazadeh, D. Khojasteh Salkuyeh, and M. Bastani, Two-parameter generalized Hermitian and skew-Hermitian splitting iteration method, Int. J. Comput. Math. 93 (2016), pp. 1119–1139. doi: 10.1080/00207160.2015.1019873
  • O. Axelsson, A generalized conjugate gradient, least square method, Numer. Math. 51 (1987), pp. 209–227. doi: 10.1007/BF01396750
  • O. Axelsson, A restarted version of a generalized preconditioned conjugate gradient method, Commun. Appl. Numer. Meth. 4 (1988), pp. 521–530. doi: 10.1002/cnm.1630040409
  • O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, 1994.
  • Z.-Z. Bai, A class of two-stage iterative methods for systems of weakly nonlinear equations, Numer. Algorithms 14 (1997), pp. 295–319. doi: 10.1023/A:1019125332723
  • Z.-Z. Bai, On the convergence of parallel chaotic nonlinear multisplitting Newton-type methods, J. Comput. Appl. Math. 80 (1997), pp. 317–334. doi: 10.1016/S0377-0427(97)00036-8
  • Z.-Z. Bai, Parallel multisplitting two-stage iterative methods for large sparse systems of weakly nonlinear equations, Numer. Algorithms 15 (1997), pp. 347–372. doi: 10.1023/A:1019110324062
  • Z.-Z. Bai, Asynchronous multisplitting AOR methods for a class of systems of weakly nonlinear equations, Appl. Math. Comput. 98 (1999), pp. 49–59.
  • Z.-Z. Bai, Modulus-based matrix splitting iteration methods for linear complementarity problems, Numer. Linear Algebra Appl. 17 (2010), pp. 917–933. doi: 10.1002/nla.680
  • Z.-Z. Bai and X.-P. Guo, On Newton-HSS methods for systems of nonlinear equations with positive-definite Jacobian matrices, J. Comput. Math. 28 (2008), pp. 235–260.
  • Z.-Z. Bai and Y.-G. Huang, Asynchronous multisplitting two-stage iterations for systems of weakly nonlinear equations, J. Comput. Appl. Math. 93 (1998), pp. 13–33. doi: 10.1016/S0377-0427(98)00280-5
  • Z.-Z. Bai and X. Yang, On HSS-based iteration methods for weakly nonlinear systems, Appl. Numer. Math. 59 (2009), pp. 2923–2936. doi: 10.1016/j.apnum.2009.06.005
  • Z.-Z. Bai, G.H. Golub, and M.K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl. 24 (2003), pp. 603–626. doi: 10.1137/S0895479801395458
  • J.Y. Bello Cruz, O.P. Ferreira, and L.F. Prudente, On the global convergence of the inexact semi-smooth Newton method for absolute value equation, Comput. Optim. Appl. 65 (2016), pp. 93–108. doi: 10.1007/s10589-016-9837-x
  • A. Berman and R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.
  • L. Caccetta, B. Qu, and G.-L. Zhou, A globally and quadratically convergent method for absolute value equations, Comput. Optim. Appl. 48 (2011), pp. 45–58. doi: 10.1007/s10589-009-9242-9
  • D.-W. Chang, The multisplitting PSD (MPSD) method for systems of weakly nonlinear equations, Int. J. Comput. Math. 65 (1997), pp. 247–262. doi: 10.1080/00207169708804614
  • C. Cryer, The solution of a quadratic programming using systematic overrelaxation, SIAM J. Control Optim. 9 (1971), pp. 385–392. doi: 10.1137/0309028
  • J.-L. Dong and M.-Q. Jiang, A modified modulus method for symmetric positive-definite linear complementarity problems, Numer. Linear Algebra Appl. 16 (2009), pp. 129–143. doi: 10.1002/nla.609
  • V. Edalatpour, D. Hezari, and D. Khojasteh Salkuyeh, A generalization of the Gauss-Seidel iteration method for solving absolute value equations, Appl. Math. Comput. 293 (2017), pp. 156–167.
  • S.-L. Hu and Z.-H. Huang, A note on absolute value equations, Optim. Lett. 4 (2010), pp. 417–424. doi: 10.1007/s11590-009-0169-y
  • S.-L. Hu, Z.-H. Huang, and Q. Zhang, A generalized Newton method for absolute value equations associated with second order cones, J. Comput. Appl. Math. 235 (2011), pp. 1490–1501. doi: 10.1016/j.cam.2010.08.036
  • Y.-F. Ke, The new iteration algorithm for absolute value equation, Appl. Math. Lett. 99 (2020), pp. 105990. doi: 10.1016/j.aml.2019.07.021
  • C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia, 1995.
  • X. Li and Y.-J. Wu, Accelerated Newton-GPSS methods for systems of nonlinear equations, J. Comput. Anal. Appl. 17 (2014), pp. 245–254.
  • K. Murty, Linear Complementarity, Linear and Nonlinear Programming, Heldermann, Berlin, 1988.
  • J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.
  • Z.-N. Pu and M.-Z. Zhu, A class of iteration methods based on the generalized preconditioned Hermitian and skew-Hermitian splitting for weakly nonlinear systems, J. Comput. Appl. Math. 250 (2013), pp. 16–27. doi: 10.1016/j.cam.2013.02.021
  • M.-L. Zeng and G.-F. Zhang, A class of preconditioned TGHSS-based iteration methods for weakly nonlinear systems, East Asian J. Appl. Math. 6 (2016), pp. 367–383. doi: 10.4208/eajam.150116.240516a
  • M.-Z. Zhu, On asymmetric Hermitian and skew-Hermitian splitting iteration methods for weakly nonlinear systems, J. Comput. Anal. Appl. 14 (2012), pp. 1321–1331.
  • M.-Z. Zhu, Modified iteration methods based on the asymmetric HSS for weakly nonlinear systems, J. Comput. Anal. Appl. 15 (2013), pp. 188–195.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.