122
Views
0
CrossRef citations to date
0
Altmetric
Articles

A partitioned scheme for adjoint shape sensitivity analysis of fluid–structure interactions involving non-matching meshes

, , , , &
Pages 546-576 | Received 02 Jan 2020, Accepted 03 Aug 2020, Published online: 17 Aug 2020

References

  • T.A. Albring, M. Sagebaum, and N.R. Gauger, Development of a consistent discrete adjoint solver in an evolving aerodynamic design framework, in 16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2015, p. 3240.
  • T. Albring, M. Sagebaum, and N.R. Gauger, A consistent and robust discrete adjoint solver for the su2 framework–-Validation and application, in New Results in Numerical and Experimental Fluid Mechanics X, Springer, 2016, pp. 77–86.
  • W.K. Anderson and V. Venkatakrishnan, Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation, Comput. Fluids. 28 (1999), pp. 443–480. doi: 10.1016/S0045-7930(98)00041-3
  • M. Barcelos, H. Bavestrello, and K. Maute, A Schur–Newton–Krylov solver for steady-state aeroelastic analysis and design sensitivity analysis,  Methods in Applied Mechanics and Engineering Comput. Methods. Appl. Mech. Eng. 195 (2006), pp. 2050–2069. doi: 10.1016/j.cma.2004.09.013
  • T. Belytschko, W.K. Liu, B. Moran, and K. Elkhodary, Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons, 2013.
  • A. Carnarius, F. Thiele, E. Oezkaya, and N.R. Gauger, Adjoint approaches for optimal flow control, in 5th Flow Control Conference, 2010, p. 5088.
  • M. Carvalho, F. Durst, and J. Pereira, Predictions and measurements of laminar flow over two-dimensional obstacles,  Mathematical Modelling Appl. Math. Model. 11 (1987), pp. 23–34. doi: 10.1016/0307-904X(87)90181-8
  • C. Castro, C. Lozano, F. Palacios, and E. Zuazua, Systematic continuous adjoint approach to viscous aerodynamic design on unstructured grids, AIAA J. 45 (2007), pp. 2125–2139. doi: 10.2514/1.24859
  • P. Dadvand, R. Rossi, and E. Oñate, An object-oriented environment for developing finite element codes for multi-disciplinary applications, Archives Comput. Methods Engin. 17 (2010), pp. 253–297. doi: 10.1007/s11831-010-9045-2
  • A. de Boer, A.H. van Zuijlen, and H. Bijl, Comparison of conservative and consistent approaches for the coupling of non-matching meshes, Comput. Methods. Appl. Mech. Eng. 197 (2008), pp. 4284–4297. doi: 10.1016/j.cma.2008.05.001
  • J. Degroote, R. Haelterman, S. Annerel, P. Bruggeman, and J. Vierendeels, Performance of partitioned procedures in fluid–structure interaction,  Structures Comput. Struct. 88 (2010), pp. 446–457. doi: 10.1016/j.compstruc.2009.12.006
  • S. Deparis, Numerical analysis of axisymmetric flows and methods for fluid-structure interaction arising in blood flow simulation, Tech. Rep., EPFL, 2004.
  • W. Dettmer and D. Perić, A computational framework for fluid–structure interaction: Finite element formulation and applications, Comput. Methods. Appl. Mech. Eng. 195 (2006), pp. 5754–5779. doi: 10.1016/j.cma.2005.10.019
  • T.D. Economon, F. Palacios, S.R. Copeland, T.W. Lukaczyk, and J.J. Alonso, Su2: An open-source suite for multiphysics simulation and design, Aiaa J. 54 (2015), pp. 828–846. doi: 10.2514/1.J053813
  • EMPIRE, Enhanced multi physics interface research engine, 2018. Available at https://github.com/DrStS/EMPIRE-Core.
  • C. Farhat, M. Lesoinne, and P. Le Tallec, Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity,  Methods in Applied Mechanics and Engineering Comput. Methods. Appl. Mech. Eng. 157 (1998), pp. 95–114. doi: 10.1016/S0045-7825(97)00216-8
  • A. Fazzolari, N.R. Gauger, and J. Brezillon, Efficient aerodynamic shape optimization in mdo context, J. Comput. Appl. Math. 203 (2007), pp. 548–560. doi: 10.1016/j.cam.2006.04.013
  • C.A. Felippa, K. Park, and C. Farhat, Partitioned analysis of coupled mechanical systems,  Methods in Applied Mechanics and Engineering Comput. Methods. Appl. Mech. Eng. 190 (2001), pp. 3247–3270. doi: 10.1016/S0045-7825(00)00391-1
  • J.S. Gray, J.T. Hwang, J.R. Martins, K.T. Moore, and B.A. Naylor, Openmdao: An open-source framework for multidisciplinary design, analysis, and optimization, Struct. Multidiscipl. Optim. 59 (2019), pp. 1075–1104. doi: 10.1007/s00158-019-02211-z
  • J. Haubner, M. Ulbrich, and S. Ulbrich, Analysis of shape optimization problems for unsteady fluid-structure interaction, Inverse. Probl. 36 (2020), p. 034001. doi: 10.1088/1361-6420/ab5a11
  • J.P. Heners, L. Radtke, M. Hinze, and A. Düster, Adjoint shape optimization for fluid–structure interaction of ducted flows, Comput. Mech. 61 (2018), pp. 259–276. Available at https://doi.org/10.1007/s00466-017-1465-5.
  • J.F. Hetu and D.H. Pelletier, Fast, adaptive finite element scheme for viscous incompressible flows, AIAA J. 30 (1992), pp. 2677–2682. doi: 10.2514/3.11284
  • N. Jenkins and K. Maute, An immersed boundary approach for shape and topology optimization of stationary fluid-structure interaction problems, Struct. Multidiscipl. Optim. 54 (2016), pp. 1191–1208. doi: 10.1007/s00158-016-1467-5
  • I. Kavvadias, E. Papoutsis-Kiachagias, and K.C. Giannakoglou, On the proper treatment of grid sensitivities in continuous adjoint methods for shape optimization, J. Comput. Phys. 301 (2015), pp. 1–18. doi: 10.1016/j.jcp.2015.08.012
  • G.K. Kenway, G.J. Kennedy, and J.R. Martins, Scalable parallel approach for high-fidelity steady-state aeroelastic analysis and adjoint derivative computations, AIAA J. 52 (2014), pp. 935–951. doi: 10.2514/1.J052255
  • J.F. Kiviaho, K. Jacobson, M.J. Smith, and G. Kennedy, A robust and flexible coupling framework for aeroelastic analysis and optimization, in 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2017, p. 4144.
  • Kratos Development Team, The Kratos multiphysics open-source project, 2018. Available at https://github.com/KratosMultiphysics.
  • C. Lozano, On mesh sensitivities and boundary formulas for discrete adjoint-based gradients in inviscid aerodynamic shape optimization, J. Comput. Phys. 346 (2017), pp. 403–436. doi: 10.1016/j.jcp.2017.06.025
  • C. Lozano, Singular and discontinuous solutions of the adjoint euler equations, AIAA J. 56 (2018), pp. 4437–4452. doi: 10.2514/1.J056523
  • C. Lozano, Watch your adjoints! lack of mesh convergence in inviscid adjoint solutions, AIAA J. 57(9) (2019), pp. 1–16. doi: 10.2514/1.J057259
  • E. Lund, H. Møller, and L.A. Jakobsen, Shape design optimization of stationary fluid-structure interaction problems with large displacements and turbulence, Struct. Multidiscipl. Optim. 25 (2003), pp. 383–392. doi: 10.1007/s00158-003-0288-5
  • K. Mani and D.J. Mavriplis, Adjoint-based sensitivity formulation for fully coupled unsteady aeroelasticity problems, AIAA J. 47 (2009), pp. 1902–1915. doi: 10.2514/1.40582
  • M. Marcelet, J. Peter, and G. Carrier, Sensitivity analysis of a strongly coupled aero-structural system using the discrete direct and adjoint methods, Euro. J. Comput. Mech./Revue Européenne De Mécanique Numérique 17 (2008), pp. 1077–1106. doi: 10.3166/remn.17.1077-1106
  • J.R. Martins and J.T. Hwang, Review and unification of methods for computing derivatives of multidisciplinary computational models, AIAA J. 51 (2013), pp. 2582–2599. doi: 10.2514/1.J052184
  • K. Maute, M. Nikbay, and C. Farhat, Coupled analytical sensitivity analysis and optimization of three-dimensional nonlinear aeroelastic systems, AIAA J. 39 (2001), pp. 2051–2061. doi: 10.2514/2.1227
  • D. Mok, W. Wall, and E. Ramm, Accelerated iterative substructuring schemes for instationary fluid-structure interaction, Comput. Fluid Solid Mech 2 (2001), pp. 1325–1328. doi: 10.1016/B978-008043944-0/50907-0
  • R. Najian Asl, Shape optimization and sensitivity analysis of fluids, structures, and their interaction using vertex morphing parametrization, Dissertation, Technische Universität München, München, 2019.
  • F. Palacios, T.D. Economon, and J.J. Alonso, Large-scale aircraft design using SU2, in 53rd AIAA Aerospace Sciences Meeting, 2015, p. 1946.
  • J.R. RA Martins, J.J. Alonso, and J.J. Reuther, High-fidelity aerostructural design optimization of a supersonic business jet, J. Aircr. 41 (2004), pp. 523–530. doi: 10.2514/1.11478
  • T. Richter, Goal-oriented error estimation for fluid–structure interaction problems, Comput. Methods. Appl. Mech. Eng. 223 (2012), pp. 28–42. doi: 10.1016/j.cma.2012.02.014
  • R. Sanchez, T. Albring, R. Palacios, N. Gauger, T. Economon, and J. Alonso, Coupled adjoint-based sensitivities in large-displacement fluid-structure interaction using algorithmic differentiation, Int. J. Numer. Methods. Eng. 113 (2018), pp. 1081–1107. doi: 10.1002/nme.5700
  • S. Sicklinger, V. Belsky, B. Engelmann, H. Elmqvist, H. Olsson, R. Wüchner, and K.U. Bletzinger, Interface Jacobian-based co-simulation,  Numerical Methods in Engineering Int. J. Numer. Methods. Eng. 98 (2014), pp. 418–444. doi: 10.1002/nme.4637
  • K.F. Singhammer, Optimal control of stationary fluid-structure interaction with partitioned methods, Dissertation, Technische Universität München, München, 2019.
  • E. Stavropoulou, Sensitivity analysis and regularization for shape optimization of coupled problems, Ph.D. diss., Technische Universität München, 2015.
  • SU2, Stanford University unstructured, 2018. Available at https://su2code.github.io.
  • T.E. Tezduyar, S. Mittal, S. Ray, and R. Shih, Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements, Comput. Methods. Appl. Mech. Eng. 95 (1992), pp. 221–242. doi: 10.1016/0045-7825(92)90141-6
  • T. Wang, Development of co-simulation environment and mapping algorithms, Ph.D. diss., Technische Universität München, 2016.
  • T. Wang, R. Wüchner, S. Sicklinger, and K.U. Bletzinger, Assessment and improvement of mapping algorithms for non-matching meshes and geometries in computational FSI, Comput. Mech. 57 (2016), pp. 793–816. doi: 10.1007/s00466-016-1262-6
  • Z.J. Zhang, S. Khosravi, and D.W. Zingg, High-fidelity aerostructural optimization with integrated geometry parameterization and mesh movement, Struct. Multidiscipl. Optim. 55 (2017), pp. 1217–1235. Available at https://doi.org/10.1007/s00158-016-1562-7.
  • Z.J. Zhang and D.W. Zingg, Efficient monolithic solution algorithm for high-fidelity aerostructural analysis and optimization, AIAA J. 56 (2017), pp. 1251–1265. doi: 10.2514/1.J056163

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.