137
Views
4
CrossRef citations to date
0
Altmetric
Articles

Newton projection method as applied to assembly simulation

ORCID Icon, ORCID Icon & ORCID Icon
Pages 577-604 | Received 09 Jul 2019, Accepted 27 Aug 2020, Published online: 18 Sep 2020

References

  • G. Andrew and J. Gao, Scalable training of L1-regularized log-linear models, in Proceedings of the 24th International Conference on Machine Learning, Association for Computing Machinery, New York, 2007, pp. 33–40.
  • D.P. Bertsekas, On the goldstein-levitin-polyak gradient projection method, IEEE. Trans. Automat. Contr. 21 (1976), pp. 174–184. doi: 10.1109/TAC.1976.1101194
  • D.P. Bertsekas, Projected newton methods for optimization problems with simple constraints, SIAM J. Control Optim. 20 (1982), pp. 221–246. doi: 10.1137/0320018
  • D.P. Bertsekas, Convex Analysis and Optimization, Athena Scientific, Belmont, 2003.
  • J.R. Birge, L. Qi, and Z. Wei, A general approach to convergence properties of some methods for nonsmooth convex optimization, Appl. Math. Optim. 38 (1998), pp. 141–158. doi: 10.1007/s002459900086
  • E.G. Birgin, J.M. Martínez, and M. Raydan, Spectral projected gradient methods: review and perspectives, J. Stat. Softw. 60 (2014), pp. 1–21. doi: 10.18637/jss.v060.i03
  • S. Boyd, L. Xiao, and A. Mutapcic, Subgradient methods (2003), lecture notes of EE392o, Stanford University, Autumn Quarter 2003–2004.
  • P.H. Calamai and J.J. More, Projected gradient methods for linearly constrained problems, Math. Program. 39 (1987), pp. 93–116. doi: 10.1007/BF02592073
  • S. Crisci, V. Ruggiero, and L. Zanni, Steplength selection in gradient projection methods for box-constrained quadratic programs, Appl. Math. Comput. 356 (2019), pp. 312–327.
  • M.W. Ferry, Projected-search methods for box-constrained optimization, Ph.D. diss., University of California, 2011.
  • D. Goldfarb and A. Idnani, A numerically stable dual method for solving strictly convex quadratic programs, Math. Program. 27 (1983), pp. 1–33. doi: 10.1007/BF02591962
  • A.A. Goldstein, Convex programming in hilbert space, Bull. Am. Math. Soc. 70 (1964), pp. 709–710. doi: 10.1090/S0002-9904-1964-11178-2
  • J. Gondzio, Interior point methods 25 years later, Eur. J. Oper. Res. 218 (2012), pp. 587–601. doi: 10.1016/j.ejor.2011.09.017
  • R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
  • M. Khapaev and M. Kupriyanov, Sparse approximation of FEM matrix for sheet current integro-differential equation, in 2nd International Conference On Matrix Methods And Operator Equations, World Scientific, Singapore, 2007, p. 38.
  • D. Kim, S. Sra, and I.S. Dhillon, Fast projection-based methods for the least squares nonnegative matrix approximation problem, Stat. Anal. Data. Min. 1 (2008), pp. 38–51. doi: 10.1002/sam.104
  • E.S. Levitin and B.T. Polyak, Constrained minimization problems, USSR Comput. Math. Math. Phys. 6 (1966), pp. 1–50. doi: 10.1016/0041-5553(66)90114-5
  • C.J. Lin and R. Saigal, An incomplete cholesky factorization for dense symmetric positive definite matrices, BIT 40 (2000), pp. 1–25.
  • S. Lupuleac, M. Kovtun, O. Rodionova, and B. Marguet, Assembly simulation of riveting process, SAE Int. J. Aerosp. 2 (2010), pp. 193–198. doi: 10.4271/2009-01-3215
  • S. Lupuleac, M. Petukhova, Y. Shinder, and B. Bretagnol, Methodology for solving contact problem during riveting process, SAE Int. J. Aeros. 4 (2011), pp. 952–957. doi: 10.4271/2011-01-2582
  • S. Lupuleac, M. Petukhova, S. Yakunin, A. Smirnov, and D. Bondarenko, Development of numerical methods for simulation of airframe assembly process, SAE Int. J. Aeros. 6 (2013), pp. 101–105. doi: 10.4271/2013-01-2093
  • S. Lupuleac, M. Petukhova, J. Shinder, A. Smirnov, M. Stefanova, N. Zaitseva, T. Pogarskaia, and E. Bonhomme, Software complex for simulation of riveting process: concept and applications, in SAE 2016 Aerospace Manufacturing and Automated Fastening Conference & Exhibition, SAE International, Bremen, 2016, p. 4.
  • S. Lupuleac, N. Zaitseva, M. Stefanova, S. Berezin, J. Shinder, M. Petukhova, and E. Bonhomme, Simulation and optimization of airframe assembly process, in International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, Pittsburgh, 2018.
  • S. Lupuleac, J. Shinder, M. Churilova, N. Zaitseva, V. Khashba, E. Bonhomme, and P. Montero-Sanjuan, Optimization of automated airframe assembly process on example of a350 s19 splice joint, Tech. Rep., SAE Technical Paper, 2019.
  • S. Lupuleac, A. Smirnov, M. Churilova, J. Shinder, N. Zaitseva, and E. Bonhomme, Simulation of body force impact on the assembly process of aircraft parts, in ASME 2019 International Mechanical Engineering Congress and Exposition, 2019.
  • S. Lupuleac, N. Zaitseva, M. Stefanova, S. Berezin, J. Shinder, M. Petukhova, and E. Bonhomme, Simulation of the wing-to-fuselage assembly process, ASME. J. Manuf. Sci. Eng. 141 (2019), pp. 1–15. doi: 10.1115/1.4043365
  • G.P. McCormick and R.A. Tapia, The gradient projection method under mild differentiability conditions, SIAM J. Contr. 10 (1972), pp. 93–98. doi: 10.1137/0310009
  • S. Mehrotra, On the implementation of a primal-dual interior point method, SIAM. J. Optim. 2 (1992), pp. 575–601. doi: 10.1137/0802028
  • J.J. Moré and G. Toraldo, On the solution of large quadratic programming problems with bound constraints, SIAM. J. Optim. 55 (1991), pp. 377–400.
  • Y. Nesterov, Introductory Lectures on Convex Optimization, Springer, Boston, 2004.
  • Y. Nesterov and A. Nemirovski, Interior Point Polynomial Algorithms in Convex Programming, SIAM, Philadelphia, 1994.
  • T. Ogita and S. Oishi, Accurate and robust inverse cholesky factorization, Nonlinear Theory Appl., IEICE 3 (2012), pp. 103–111. doi: 10.1587/nolta.3.103
  • T. Ogita, S.M. Rump, and S. Oishi, Accurate sum and dot product, SIAM J. Sci. Comput. (SISC) 26 (2005), pp. 1955–1988. doi: 10.1137/030601818
  • M.A. Osborne, Bayesian gaussian processes for sequential prediction, optimisation and quadrature, Ph.D. diss., Oxford University New College, 2010.
  • M. Petukhova, S. Lupuleac, Y. Shinder, A. Smirnov, S. Yakunin, and B. Bretagnol, Numerical approach for airframe assembly simulation, J. Math. Ind. 4 (2014).
  • T. Pogarskaia, M. Churilova, M. Petukhova, and E. Petukhov, Simulation and optimization of aircraft assembly process using supercomputer technologies, in Communications in Computer and Information Science, Vol. 965, Springer, Cham, 2018.
  • M.J.D. Powell, On the quadratic programming algorithm of goldfarb and idnani, Math. Program. Studies 25 (1985), pp. 46–61. doi: 10.1007/BFb0121074
  • R. Pytlak and T. Tarnawski, Preconditioned conjugate gradient algorithms for nonconvex problems, Computing 2 (2006), pp. 81–104.
  • J.B. Rosen, The gradient projection method for nonlinear programming. part i. linear constraints, SIAM. J. Appl. Math. 8 (1961), pp. 181–217. doi: 10.1137/0108011
  • S.M. Rump, Inversion of extremely ill-conditioned matrices in floating-point, Japan J. Indust. Appl. Math 26 (2009), pp. 249–277. doi: 10.1007/BF03186534
  • O. Santin, M. Jarošová, V. Havlena, and Z. Dostal, Proportioning with second-order information for model predictive control, Optim. Methods Soft. 32 (2016), pp. 1–19.
  • J. Schöberl, Solving the signorini problem on the basis of domain decomposition techniques, Computing 60 (1998), pp. 323–344. doi: 10.1007/BF02684379
  • M. Schmidt, D. Kim, and S. Sra, Projected Newton-type methods in machine learning, in Optimization for Machine Learning, MIT Press, Cambridge, MA, USA, 2011, pp. 305–330.
  • D.D. Serafino, V. Ruggiero, G. Toraldo, and L. Zanni, On the steplength selection in gradient methods for unconstrained optimization, Appl. Math. Comput. 318 (2018), pp. 176–195.
  • M. Stefanova, S. Yakunin, M. Petukhova, S. Lupuleac, and M. Kokkolaras, An interior-point method-based solver for simulation of aircraft parts riveting, Eng. Optim. 50 (2018), pp. 781–796. doi: 10.1080/0305215X.2017.1355367
  • M. Stefanova, O. Minevich, S. Baklanov, M. Petukhova, S. Lupuleac, B. Grigor'ev, and M. Kokkolaras, Convex optimization techniques in compliant assembly simulation, Optim. Eng. (2020), pp. 1–26.
  • G.W. Stewart, Basic Decompositions, Soc. for Industrial and Applied Mathematics, Philadelphia, 1998.
  • M. Vallejos, Mgopt with gradient projection method for solving bilinear elliptic optimal control problems, Computing 87 (2010), pp. 21–33. doi: 10.1007/s00607-009-0073-4
  • H.A. van der Vorst, Iterative Krylov Methods for Large Linear Systems, Cambridge University Press, Cambridge, 2003.
  • P.T. Vuong, J.J. Strodiot, and V.H. Nguyen, A gradient projection method for solving split equality and split feasibility problems in hilbert spaces, Optimization 64 (2014), pp. 2321–2341. doi: 10.1080/02331934.2014.967237
  • Y. Yao, S.M. Kang, W. Jigang, and P.X. Yang, A regularized gradient projection method for the minimization problem, J. Appl. Math. 2012 (2012), pp. 9.
  • N. Zaitseva, T. Pogarskaia, O. Minevich, J. Shinder, and E. Bonhomme, Simulation of aircraft assembly via asrp software, Tech. Rep., SAE Technical Paper, 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.