89
Views
2
CrossRef citations to date
0
Altmetric
Review

Tensorial total variation-based image and video restoration with optimized projection methods

, &
Pages 102-133 | Received 24 May 2021, Accepted 17 Jan 2022, Published online: 27 Apr 2022

References

  • A.H. Bentbib, A. Bouhamidi, and K. Kreit, A conditional gradient method for primal–dual total variation-based image denoising, Electron. Trans. Numer. Anal. 48 (2018), pp. 310–328.
  • A.H. Bentbib, M. El Guide, and K. Jbilou, A generalized matrix Krylov subspace method for TV regularization, J. Comput. Appl. Math. 373 (2019), pp. 112405.
  • A.H. Bentbib, M. El Guide, K. Jbilou, and L. Reichel, A global Lanczos method for image restoration, J. Comput. Appl. Math. 300 (2016), pp. 233–244.
  • A. Bouhamidi, K. Jbilou, L. Reichel, and H. Sadok, An extrapolated tsvd method for linear discrete ill-posed problems with kronecker structure, Linear. Algebra. Appl. 434 (2011), pp. 1677–1688.
  • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends® Mach. Learn. 3 (2011), pp. 1–122.
  • S.H. Chan, R. Khoshabeh, K.B. Gibson, P.E. Gill, and T.Q. Nguyen, An augmented lagrangian method for total variation video restoration, IEEE. Trans. Image. Process. 20 (2011), pp. 3097–3111.
  • Z. Chen and L. Lu, A projection method and kronecker product preconditioner for solving sylvester tensor equations, Science China Math. 55 (2012), pp. 1281–1292.
  • E.K. Chong and S.H. Zak, An Introduction to Optimization, John Wiley & Sons, Inc, Hoboken (NJ), 2004.
  • A. Cichocki, R. Zdunek, A.H. Phan, and S.i. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation, John Wiley & Sons, Chichester, 2009.
  • D. Colton, M. Piana, and R. Potthast, A simple method using Morozov's discrepancy principle for solving inverse scattering problems, Inverse. Probl. 13 (1997), pp. 1477–1493.
  • K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image restoration by sparse 3D transform-domain collaborative filtering, Image Processing: Algorithms and Systems VI, Vol. 6812, International Society for Optics and Photonics, 2008, pp. 681207.
  • J.P. Dedieu, Points Fixes, Zéros Et La Méthode De Newton. 1.Springer, Berlin, Heidelberg, 2006.
  • J. Duran, B. Coll, and C. Sbert, Chambolle's projection algorithm for total variation denoising, Image Process. Line 3 (2013), pp. 311–331.
  • D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Comput. Math. Appl. 2 (1976), pp. 17–40.
  • P. Getreuer, Rudin–Osher–Fatemi total variation denoising using split Bregman, Image Process. On Line 2 (2012), pp. 74–95.
  • G. Golub and W. Kahan, Calculating the singular values and pseudo-inverse of a matrix, J. Soc. Indust. Appl. Math., Ser. B: Numer. Anal. 2 (1965), pp. 205–224.
  • M.E. Guide, A.E. Ichi, F. Beik, and K. Jbilou, Tensor gmres and Golub–Kahan bidiagonalization methods via the Einstein product with applications to image and video processing, preprint (2020), Available at arXiv:2005.07458.
  • M.E. Guide, A.E. Ichi, K. Jbilou, and R. Sadaka, Tensor Krylov subspace methods via the t-product for color image processing, preprint (2020). Available at arXiv:2006.07133.
  • X. Guo and Y. Ma, Generalized tensor total variation minimization for visual data recovery, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3603–3611.
  • A. Haddad, Stability in a class of variational methods, Appl. Comput. Harmon. Anal. 23 (2007), pp. 57–73.
  • P.C. Hansen, The truncated svd as a method for regularization, BIT Numer. Math. 27 (1987), pp. 534–553.
  • B. He, H. Yang, and S. Wang, Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities, J. Optim. Theory Appl. 106 (2000), pp. 337–356.
  • B. Huang and C. Ma, Global least squares methods based on tensor form to solve a class of generalized Sylvester tensor equations, Appl. Math. Comput. 369 (2020), pp. 124892.
  • S. Karimi and M. Dehghan, Global least squares method based on tensor form to solve linear systems in Kronecker format, Trans. Inst. Meas. Control 40 (2018), pp. 2378–2386.
  • T.G. Kolda and B.W. Bader, Tensor decompositions and applications, SIAM Rev. 51 (2009), pp. 455–500.
  • N. Lee and A. Cichocki, Fundamental tensor operations for large-scale data analysis in tensor train formats, preprint (2014). Available at arXiv:1405.7786.
  • C. Li, An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing, Ph.D. diss., Rice University, 2010.
  • M.J. Powell, A method for nonlinear constraints in minimization problems, Optimization, Academic Press1969), pp. 283–298.
  • Z. Qin, D. Goldfarb, and S. Ma, An alternating direction method for total variation denoising, Optim. Methods Softw. 30 (2015), pp. 594–615.
  • D. Ren, H. Zhang, D. Zhang, and W. Zuo, Fast total-variation based image restoration based on derivative alternated direction optimization methods, Neurocomputing 170 (2015), pp. 201–212.
  • L.I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys. D Nonlinear Phenomena 60 (1992), pp. 259–268.
  • X.C. Tai and C. Wu, Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model, International conference on scale space and variational methods in computer vision, Springer, 2009, pp. 502–513.
  • Y.W. Wen, M.K. Ng, and Y.M. Huang, Efficient total variation minimization methods for color image restoration, IEEE. Trans. Image. Process. 17 (2008), pp. 2081–2088.
  • B. Wohlberg, Admm penalty parameter selection by residual balancing, preprint (2017). Available at arXiv:1704.06209.
  • C. Wu, J. Zhang, and X.C. Tai, Augmented Lagrangian method for total variation restoration with non-quadratic fidelity, Inverse Probl. Imaging 5 (2011), pp. 237–261.
  • P. Xu, Truncated svd methods for discrete linear ill-posed problems, Geophys. J. Int. 135 (1998), pp. 505–514.
  • S. Yang, J. Wang, W. Fan, X. Zhang, P. Wonka, and J. Ye, An efficient ADMM algorithm for multidimensional anisotropic total variation regularization problems, Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, 2013, pp. 641–649.
  • T.J. Ypma, Historical development of the Newton–Raphson method, SIAM Rev. 37 (1995), pp. 531–551.
  • J. Zhang, D. Zhao, R. Xiong, S. Ma, and W. Gao, Image restoration using joint statistical modeling in a space-transform domain, IEEE. Trans. Circuits. Syst. Video. Technol. 24 (2014), pp. 915–928.
  • Y. Zheng, B. Jeon, J. Zhang, and Y. Chen, Adaptively determining regularisation parameters in non-local total variation regularisation for image denoising, Electron. Lett. 51 (2015), pp. 144–145.
  • M. Zhu and T. Chan, An efficient primal–dual hybrid gradient algorithm for total variation image restoration, Tech. Rep. UCLA CAM Report 34, 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.