379
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Current Status of Oxide Dielectric Materials for Terahertz Applications–An Overview

, , &
Pages 108-139 | Accepted 13 Jun 2015, Published online: 15 Dec 2015

References

  • T., Kleine-Ostmann and T. Nagatsuma, A Review on Terahertz Communications Research. Journal of Infrared Millimeter and Terahertz Waves 32(2), 143–171 (2011).
  • J., Federici and L. Moeller, Review of terahertz and subterahertz wireless communications. Journal of Applied Physics 107(11), (2010).
  • M., Schirmer, et al., Biomedical applications of a real-time terahertz color scanner. Biomedical Optics Express 1(2), 354–366 (2010).
  • E., Pickwell and V.P. Wallace, Biomedical applications of terahertz technology. Journal of Physics D-Applied Physics 39(17), R301–R310 (2006).
  • B.B. , Hu and M.C. Nuss, Imaging with Terahertz Waves. Optics Letters 20(16), 1716 (1995).
  • W.R. , Tribe, et al., Hidden object detection: security applications of terahertz technology. Terahertz and Gigahertz Electronics and Photonics Iii 5354, 168–176 (2004).
  • M.C. , Kemp, et al., Security applications of terahertz technology. Terahertz for Military and Security Applications 5070, 44–52 (2003).
  • H.B. , Liu, et al., Terahertz spectroscopy and imaging for defense and security applications. Proceedings of the Ieee 95(8), 1514–1527 (2007).
  • W.H. , Fan, et al., Far-infrared spectroscopic characterization of explosives for security applications using broadband terahertz time-domain spectroscopy. Applied Spectroscopy 61(6), 638–643 (2007).
  • A.A. , Gowen, C. O’Sullivan, and C.P. O’Donnell, Terahertz time domain spectroscopy and imaging: Emerging techniques for food process monitoring and quality control. Trends in Food Science & Technology 25(1), 40–46 (2012).
  • Tobias Kampfrath, K.T., Keith A.Nelson, Resonant and nonresonant control over matter and light by intense terahertz transients. Nature Photonics, 7(9), 680–690 (2013).
  • D., Woolard, et al., Terahertz electronics for chemical and biological warfare agent detection. 1999 Ieee Mtt-S International Microwave Symposium Digest, Vols 1–4, 925–928 (1999).
  • D.H. , Auston, et al., Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media. Physical Review Letters 53(16), 1555–1558 (1984).
  • C., Fattinger and D. Grischkowsky, Point-Source Terahertz Optics. Applied Physics Letters 53(16), 1480–1482 (1988).
  • D., Dragoman and M. Dragoman, Terahertz fields and applications. Progress in Quantum Electronics, 28(1), 1–66 (2004).
  • J.Z. , Xu, C.L. Zhang, and X.C. Zhang, Recent progress in terahertz science and technology. Progress in Natural Science, 12(10), 729–736 (2002).
  • P.H. , Siegel, Terahertz technology. Ieee Transactions on Microwave Theory and Techniques 50(3), 910–928 (2002).
  • M., Tonouchi, Cutting-edge terahertz technology. Nature Photonics 1(2), 97–105 (2007).
  • B.S. , Williams, Terahertz quantum-cascade lasers. Nature Photonics, 1(9), 517–525 (2007).
  • D.J. , Paul, The progress towards terahertz quantum cascade lasers on silicon substrates. Laser & Photonics Reviews 4(5), 610–632 (2010).
  • H., Ito, et al., Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes. Semiconductor Science and Technology, 20(7), S191–S198 (2005).
  • N., Orihashi, S. Suzuki, and M. Asada, One THz harmonic oscillation of resonant tunneling diodes. Applied Physics Letters, 87(23), (2005).
  • N., Sekine and K. Hirakawa, Dispersive terahertz gain of a nonclassical oscillator: Bloch oscillation in semiconductor superlattices. Physical Review Letters 94(5), (2005).
  • S., Komiyama, et al., A single-photon detector in the far-infrared range. Nature 403(6768), 405–407 (2000).
  • S.L. , Dexheimer, Terahertz spectroscopy : principles and applications. Optical science and engineering; 131Optical science and engineering (Boca Raton, Fla.); 166. 2008: Boca Raton : CRC Press, c2008.
  • Y.-S., Lee, Principles of Terahertz Science and Technology. 2009: Springer US.
  • X.-C., Zhang and J. Xu, Introduction to THz Wave Photonics. 2010: Springer US. 246.
  • D., Mittleman, Sensing with terahertz radiation. Springer series in optical sciences; 166. 2003: Berlin; New York : Springer, c2003.
  • B., Ferguson and X.C. Zhang, Materials for terahertz science and technology. Nature Materials 1(1), 26–33 (2002).
  • C.A. , Schmuttenmaer, Exploring dynamics in the far-infrared with terahertz spectroscopy. Chemical Reviews 104(4), 1759–1779 (2004).
  • M.C. , Nuss and J. Orenstein, Terahertz time-domain spectroscopy. Millimeter and Submillimeter Wave Spectroscopy of Solids 74, 7–50 (1998).
  • A., Tomasino, et al., Wideband THz Time Domain Spectroscopy based on Optical Rectification and Electro-Optic Sampling. Scientific Reports, 2013. 3.
  • F., Zernike and P.R. Berman, Generation of Far Infrared as a Difference Frequency. Physical Review Letters 15(26), 999-& (1965).
  • J.R. , Morris and Y.R. Shen, Theory of Far-Infrared Generation by Optical Mixing. Physical Review A 15(3), 1143–1156.
  • D.H. , Auston, Subpicosecond Electrooptic Shock-Waves. Applied Physics Letters 43(8), 713–715 (1983).
  • S., Preu, et al., Tunable, continuous-wave Terahertz photomixer sources and applications. Journal of Applied Physics.109(6) (2011).
  • L.J. , Bignell and R.A. Lewis, Reflectance studies of candidate THz emitters. Journal of Materials Science-Materials in Electronics 20, 326–331 (2009).
  • H.W. , Hubers, et al., Terahertz emission from silicon doped by shallow impurities. Physica B-Condensed Matter 308, 232–235 (2001).
  • A., Urbanowicz, et al., Terahertz emission from ferntosecond laser excited Ge surfaces due to the electrical field-induced optical rectification. Physica B-Condensed Matter 398(1), 98–101 (2007).
  • K., Kawase, J. Shikata, and H. Ito, Terahertz wave parametric source. Journal of Physics D-Applied Physics 35(3), R1–R14 (2002).
  • K.L. , Yeh, et al., Generation of 10 mu J ultrashort terahertz pulses by optical rectification. Applied Physics Letters 90(17), (2007).
  • J., Hebling, et al., Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. Journal of the Optical Society of America B-Optical Physics 25(7), B6–B19 (2008).
  • X.M. , Zheng, et al., Organic broadband terahertz sources and sensors. Journal of Nanoelectronics and Optoelectronics 2(1), 58–76 (2007).
  • T., Taniuchi, S. Okada, and H. Nakanishi, Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application. Journal of Applied Physics 95(11), 5984–5988 (2004).
  • J.F. , Scott, et al., Terahertz Emission from Tubular Pb(Zr,Ti)O-3 Nanostructures. Nano Letters 8(12), 4404–4409 (2008).
  • K., Takahashi, N. Kida, and M. Tonouchi, Terahertz radiation by an ultrafast spontaneous polarization modulation of multiferroic BiFeO3 thin films. Physical Review Letters 96(11), (2006).
  • J., Le Gouet, et al., Dual-frequency single-axis laser using a lead lanthanum zirconate tantalate (PLZT) birefringent etalon for millimeter wave generation: beyond the standard limit of tunability. Optics Letters 32(9), 1090–1092 (2007).
  • N., Kida and M. Tonouchi, Terahertz radiation from magnetoresistive Pr0.7Ca0.3MnO3 thin films under strong electric fields. Journal of the Optical Society of America B-Optical Physics 23(1), 179–182 (2006).
  • L., Ozyuzer, et al., Emission of coherent THz radiation from superconductors. Science 318(5854), 1291–1293 (2007).
  • K., Miyamoto, et al., Broadband terahertz light source pumped by a 1 mu m picosecond laser. Applied Physics B-Lasers and Optics 110(3), 321–326 (2013).
  • D.H. , Auston and A.M. Glass, Optical Generation of Intense Picosecond Electrical Pulses. Applied Physics Letters 20(10), 398-& (1972).
  • J.A. , Valdmanis, G. Mourou, and C.W. Gabel, Picosecond Electrooptic Sampling System. Applied Physics Letters 41(3), 211–212 (1982).
  • P.U. , Jepsen, et al., Detection of THz pulses by phase retardation in lithium tantalate. Physical Review E 53(4), R3052–R3054 (1996).
  • C., Winnewisser, et al., Electro-optic detection of THz radiation in LiTaO3, LiNbO3, and ZnTe. Applied Physics Letters 70(23), 3069–3071 (1997).
  • S., Hisatake, et al., Generation of flat power-envelope terahertz-wide modulation sidebands from a continuous-wave laser based on an external electro-optic phase modulator. Optics Letters 30(7), 777–779 (2005).
  • C., Otani, et al., A broad-band THz radiation detector using a Nb-based superconducting tunnel junction. Ieee Transactions on Applied Superconductivity 15(2), 591–594 (2005).
  • L., Wu, et al., Far-infrared dispersion of the complex dielectric constant in ferroelectric near-stoichiometric LiNbO3:Ce. Journal of Optics 13(10), (2011).
  • K.A. , Kuznetsov, et al., Dispersion of the dielectric function real part for Mg:LiNbO3 crystals at terahertz frequencies. Applied Physics B-Lasers and Optics 101(4), 811–815 (2010).
  • H.C. , Guo, W.M. Liu, and S.H. Tang, Terahertz time-domain studies of far-infrared dielectric response in 5 mol% MgO: LiNbO3 ferroelectric single crystal. Journal of Applied Physics 102(3), (2007).
  • J., Hlinka, et al., Coexistence of the Phonon and Relaxation Soft Modes in the Terahertz Dielectric Response of Tetragonal BaTiO3. Physical Review Letters 101(16) (2008).
  • B., Pradarutti, et al., Electro-optical sampling of ultrashort THz pulses by fs-laser pulses at 530 nm with BaTiO3. Journal of Applied Physics 102(9), (2007).
  • T., Tsurumi, et al., Ultrawide range dielectric spectroscopy of BaTiO3-based perovskite dielectrics. Applied Physics Letters 91(18), (2007).
  • T., Teranishi, T. Hoshina, and T. Tsurumi, Wide range dielectric spectroscopy on perovskite dielectrics. Materials Science and Engineering B-Advanced Functional Solid-State Materials 161(1-3), 55–60 (2009).
  • G.A. , Komandin, et al., Terahertz dielectric spectra of (Ba,Sr)TiO3 thin films. Physics of the Solid State 51(7), 1351–1355 (2009).
  • L., Goux, et al., Pulsed laser deposition of ferroelectric BST thin films on perovskite substrates: an infrared characterization. International Journal of Inorganic Materials 3(7), 839–842 (2001).
  • P., Mounaix, et al., High-frequency response in ferroelectric BaSrTiO3 thin films studied by terahertz time-domain spectroscopy. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 44(7A), 5058–5061 (2005).
  • A., Soukiassian, et al., Acoustic Bragg mirrors and cavities made using piezoelectric oxides. Applied Physics Letters 90(4), (2007).
  • F., Wan, J.G. Han, and Z.Y. Zhu, Dielectric response in ferroelectric BaTiO3. Physics Letters A 372(12), 2137–2140 (2008).
  • J., Han,et al., Dielectric response of soft mode in ferroelectric SrTiO[sub 3]. Applied Physics Letters 90(3), 031104 (2007).
  • M., Misra,et al., Observation of TO[sub 1] soft mode in SrTiO[sub 3] films by terahertz time domain spectroscopy. Applied Physics Letters 87(18), 182909 (2005).
  • A., Tkach,et al., Lattice dynamics and dielectric response of Mg-doped SrTiO[sub 3] ceramics in a wide frequency range. Journal of Applied Physics 97(4), 044104 (2005).
  • C., Kadlec,et al., Temperature and electric field tuning of the ferroelectric soft mode in a strained SrTiO3/DyScO3 heterostructure. Physical Review B 80(17), (2009).
  • H., Nemec,et al., Highly tunable photonic crystal filter for the terahertz range. Optics Letters 30(5), 549–551 (2005).
  • D., Nuzhnyy,et al., Dynamics of the phase transitions in Bi-layered ferroelectrics with Aurivillius structure: Dielectric response in the terahertz spectral range. Physical Review B 74(13), (2006).
  • H., Amorin,et al., Structural and electrical characterization of ferroelectric SrBi2Nb2O9 single crystals grown by high-temperature self-flux solution. Ferroelectrics 320, 511–518 (2005).
  • K., Berdel,et al., Temperature dependence of the permittivity and loss tangent of high-permittivity materials at terahertz frequencies. Ieee Transactions on Microwave Theory and Techniques 53(4), 1266–1271 (2005).
  • A., Belous,et al., Effect of vacancies on the structural and relaxor properties of (Sr,Ba,Na)Nb2O6. Journal of Applied Physics 102(1), (2007).
  • E., Buixaderas,et al., Infrared and dielectric spectroscopy of the relaxor ferroelectric Sr0.6Ba0.39NB2O6. Journal of Physics-Condensed Matter 17(4), 653–666 (2005).
  • S., Glinsek,et al., Lattice dynamics and broad-band dielectric properties of the KTaO3 ceramics. Journal of Applied Physics 111(10), (2012).
  • M.C. , Ferrarelli,et al., Soft-mode behavior and incipient ferroelectricity in Na1/2Bi1/2Cu3Ti4O12. Physical Review B 81(22), (2010).
  • J., Petzelt,et al., Infrared, Raman and high-frequency dielectric spectroscopy and the phase transitions in Na1/2Bi1/2TiO3. Journal of Physics-Condensed Matter 16(15), 2719–2731 (2004).
  • H.L. , Liu,et al., Effect of SnO2 addition on the dielectric properties of Ba2Ti9O20 ceramics in the high-frequency regime. Journal of Applied Physics 100(9), (2006).
  • P., Samoukhina,et al., Infrared and terahertz dielectric spectra of novel Bi2O3-Nb2O5 microwave ceramics. Journal of the European Ceramic Society 25(12), 3085–3088 (2005).
  • I.N. , Lin,et al., Dielectric properties of xBa(Mg1/3Ta2/3)O-3-(1-x)Ba(Mg1/3Nb2/3)O-3 complex perovskite ceramics. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 41(11B), 6952–6956 (2002).
  • T.R. , Tsai,et al., Dielectric properties of (x)Ba(Mg1/3Ta2/3)O-3-(1-x)Ba(Mg1/3Nb2/3)O-3 (x = 1, 0.75, 0.50, 0.25 and 0) complex perovskite ceramics. Materials Chemistry and Physics 79(2-3), 169–174 (2003).
  • H., Wang,et al., Microwave and infrared dielectric response of monoclinic bismuth zinc niobate based pyrochlore ceramics with ion substitution in A site. Journal of Applied Physics 100(3), (2006).
  • Z.H. , Yong,et al., Terahertz Time-Domain Spectroscopy of 0.73Pb(Mg1/3Nb2/3)O3-0.27PbTiO3 Single Crystal. Journal of the American Ceramic Society 97(6), 1696–1699 (2014).
  • S., Kamba,et al., Infrared and Raman spectroscopy of [Pb(Zn1/3Nb2/3)O-3](0.92)-[PbTiO3](0.08) and [Pb(Mg1/3Nb2/3)O-3](0.71)-[PbTiO3](0.29) single crystals. Journal of Applied Physics 93(2), 933–939 (2003).
  • R., Martinez,et al., Nanoscale ordering and multiferroic behavior in Pb(Fe1/2Ta1/2)O-3. Physical Review B 82(13), (2010).
  • C.W. , Chen,et al., Frequency-Dependent Complex Conductivities and Dielectric Responses of Indium Tin Oxide Thin Films from the Visible to the Far-Infrared. Ieee Journal of Quantum Electronics 46(12), 1746–1754 (2010).
  • H., Nemec,et al., Tuning the Conduction Mechanism in Niobium-Doped Titania Nanoparticle Networks. Journal of Physical Chemistry C 115(14), 6968–6974 (2011).
  • J., Lott,et al., Terahertz Photonic Crystals Based on Barium Titanate/Polymer Nanocomposites. Advanced Materials 20(19), 3649 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.