Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 167, 2015 - Issue 1
268
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Characterization of Optical and Structural of Lanthanum Doped LiTaO3 Thin Films

, , , &
Pages 137-145 | Received 17 Aug 2015, Accepted 17 Aug 2015, Published online: 21 Dec 2015

REFERENCES

  • J. Kushibiki: Quantitative characterization of proton-exchanged layers in LiTaO3 optoelectronic devices by line-focus-beam acoustic microscopy. IEEE Photonic Technology Letters. 8(11), 1516–1518 (1996).
  • T.N. Blanton, and H. Liang-Sun: X-ray diffraction characterization of multilayer epitaxial thin films deposited on (0001) sapphire. The Rigaku Journal. 13(1), 3–8 (1996).
  • A.H. M. Gonzalez, A.Z. Simoes, M.A. Zaghete, E. Longo, and J.A. Varela: Effect of thermal treatment temperature on the crystallinity and morphology of LiTaO3 thin films prepared from polymeric precursor method. journal of electroceramics. 13, 353–359 (2004).
  • V.Y. Shur: Self-organization in LiNbO3 and LiTaO3: formation of micro- and nano-scale domain patterns. Ferroelectrics. 304, 111–116 (2004).
  • Christophis: Adherent cells avoid polarization gradients on periodically poled LiTaO3 ferroelectrics. Biointerphases. 8(27), 1–9 (2013).
  • A.H. M. Gonzalez, A.Z. Simoes, M.A. Zaghete, and J.A. Varela: Effect of preannealing on the morphology of LiTaO3 thin films prepared from the polymeric precursor method. Materials Characteization. 50, 233–238 (2003).
  • B.S. Allimi, M. Aindow, and S.P. Alpay: Thickness dependence of electronic phase transitions in epitaxial V2O3 films on (0001) LiTaO3. Applied Physics Letters. 93, 109–112 (2008).
  • P.M. Vilarinho, N. Barroca, S. Zlotnik, P. Felix, and M.H. Fernandes: Are lithium niobate (LiNbO3) and lithium tantalate (LiTaO3) ferroelectrics bioactive? Materials science and engineering C. 39, 395–402 (2014).
  • Y. Tao: Influence of chemical reduction on optical and electrical properties of LiTaO3 crystal. Journal of Alloys and Compounds. 497, 412–415 (2010).
  • S. Youssel: Characterization of LiTaO3 thin films fabricated by sol–gel technique. Microelectronics Journal. 38, 63–66 (2007).
  • S. Amir, R. Arsat, H. Xiuli, K. Kalantar-Zadeh, and W. Wlodarski: Polyvinilpyrrolidone/ polyaniline composite based 36o YX LiTaO3 surface acoustic wave H2 gas sensor. Sains Malaysiana. 42 (2), 213–217 (2013).
  • V. Norkus: Uncooled linear arrays based on LiTaO3. DIAS Infrared GmbH. 8, 1–7 (2000).
  • W. Bruce and Wessels: Ferroelectric epitaxial thin films for integrated optics. The Annual Review Materials Research. 37, 659–679 (2007).
  • M.A. Aeagerter: Ferroelectric thin coatings. Journal of Non-Crystalline Solids. 151, 195–202 (1992).
  • D.G. Schlom, C. Long-Qing, P. Xiaoqing, A. Schmehl, and M.A. Zurbuchen: A thin film approach to engineering functionality into oxides. Journal of American Ceramic Society. 91 (8), 2429–2454 (2008).
  • V. Stenger, M. Shnider, and S. Sriram: Thin film lithium tantalate (TFLT™) pyroelectric detectors. Optoelectronic Materials and Devices. 8 (26), 1–27 (2012).
  • C.C. Chan, M.C. Kao, and Y.C. Chen: Effects of membrane thickness on the pyroelectric properties of LiTaO3 thin film IR detectors. Japanese Journal of Applied Physics. 44(2), 257–265 (2005).
  • Cassons: Electro-optic coefficients of lithium tantalite at near-infrared wavelengths. Journal Society of America. 21(11), 1948–1952 (2008).
  • M.V. Yakushev, P. Maiello, T. Raadik, M.J. Shaw, P.R. Edwards, J. Krustok, A.V. Mudryi, I. Forbes, and R.W. Martin: Investigation of the structural, optical and electrical properties of Cu3BiS3 semiconducting thin films. Energy Procedia. 60, 166–172 (2014).
  • H. Saima, Y. Mogi, and T. Haraoka: Development of PSA system for the recovery of carbon dioxide and carbon monoxide from blast furnace gas in steel works. Energy Procedia. 37, 7152–7159 (2013).
  • C. Ketelaar and V. Ajaev: Models of drainage and rupture of thin electrolyte films on flat and structured solid substrates. Procedia IUTAM. 15, 132–138 (2015).
  • R. Chen et al. : Percent free prostate-specific antigen for prostate cancer diagnosis in Chinese men with a PSA of 4.0e10.0 ng/mL: results from the Chinese Prostate Cancer Consortium. Asian Journal of Urology. 12, 1–7 (2015).
  • T. Gul, S. Islam, R.A. Shah, I. Khan, and S. Shafie: Analysis of thin film flow over a vertical scillating belt with a second grade fluid. Engineering Science and Technology, an International Journal. 18, 207–217 (2015).
  • P. Capek, G. Stone, V. Dierolf, C. Althouse, and V. Gopolan: Raman studies of ferroelectric domain walls in lithium tantalite and niobate. Phys Stat Sol. 4, 830–833 (2007).
  • P.J. Collings: Simple measurement of the band gap in silicon and germanium. Am J Phys. 48 (3):197–199 (1980).
  • J. Millán, P. Godignon, and A. Pérez-Tomás: Wide band gap semiconductor devices for power electronics. AUTOMATIKA. 53 (2), 107–116 (2012).
  • G. Panomsuwan, O. Takai, and N. Saito: Optical and mechanical properties of transparent SrTiO3 thin films deposited by ECR ion beam sputter deposition. Phys Status Solid A. ; 210 (2), 311–319 (2013).
  • K. van Benthem, C. Elsässer, and R.H. French: Bulk electronic structure of SrTiO3 : experiment and theory. J Appl Phys. 90(12), 6156–6174 (2001).
  • D.H. Lee and R.A. Condrate, SR: FTIR spectral characterization of thin film coatings of oleic acid on glasses: I. coatings on glasses from ethyl alcohol. Journal of Materials Science. 34, 139–146 (1999).
  • S. Sathish and B.C. Shekar: Preparation and characterization of nano scale PMMA thin film. Indian Journal of Pure & Applied Physics. 52, 64–67 (2014).
  • W.A. Jabbar, N.F. Habubi, and S.S. Chiad: Optical characterization of silver doped poly (vinyl alcohol) films. Journal of The Arkansas Academy of Science. 64, 101–105 (2010).
  • A. Kassim, S. Nagalingam, S.M. Ho, and N. Karrim: XRD and AFM studies of ZnS thin films produced by electrodeposition method. Arabian Journal of Chemistry. 3, 243–249 (2010).
  • D. Rajesh and C.S. Sunandana: XRD, optical and AFM studies on pristine and partially iodized Ag thin film. Result in Physics. 2, 22–25 (2012).
  • Irzaman, Irmansyah, H. Syafutra, A. Arif, H. Alatas, Y. Astuti, Siskandar.R Nurullaeli, Aminullah, G.P.A. Sumiarna, Z.A. Z. Jamal: Effect of annealing times for LiTaO3 thin films on structure, nano scale grain size and band gap. American Journal of Materials Research. 1(1), 7–13 (2014).
  • Irzaman, Y. A. Darvina, P. Fuad, M. Arifin, and Barmawi.M Budiman: Physical and piroelectric properties of tantalum oxide doped lead zirconium titanate Pb0,995(Zr0,525Ti­0,010)O3 thin films and its application for IR sensor. Physica Status Solidi (a). 199(3), 416–424 (2003).
  • Irzaman and M. Barmawi: Crystallography and surface morphology of Ta2O3 doped PZT thin films. Journal Sains MIPA. 13(2), 84–88 (2007).
  • Irzaman and M. Barmawi: Tetragonal to cubic phase transformation in tantalum oxide doped PZT ceramic. Journal Sains MIPA. 14(1), 5–7 (2008).
  • Irzaman, H. Darmasetiawan, H. Hardhienata, M. Hikam, P. Arifin, S.N. Jusoh, S. Taking, Z. Jamal, and M.A. Idris: Surface rougness and grain size characterization of effect of annealing temperature for growth gallium and tantalum doped Ba0,5SR0,5TiO3 thin film. Journal Atom Indonesia. 35(1), 57–67 (2009).
  • Irzaman, H. Syahfutra, H. Darmasetiawan, H. Hardhienata, R. Erviansyah, F. Huriawati, A. Maddu, M. Hikam, and P. Arifin: Electrical properties of photodiode BST thin film doped with ferrium oxide using chemical deposition solution method. Journal Atom Indonesia. 37(3), 133–138 (2011).
  • H. Syahfutra, Irzaman, M.N. Indro, and I.D. M. Subrata: Development of iuxmeter based on BST ferroelectric material. The 4th Asian Symposium. American Institute of Physics (AIP) Conference. 2010;1325: 75-78.
  • H. Syahfutra, Irzaman, and I.D. M. Subrata: Integrated visible light sensor based on thin film ferroelectric material BST to microcontroller ATMega 8535. The International Conference on Materials Science and Technology. 1(1), 291–296 (2010).
  • Sucipto, I. Surur, I. Deni, S. Bessie, I. Budiman, H. Syahfutra, Irzaman, T. Djatna, T.T. Irawadi, and A.M. Fauzi: Photodiode Ba0.5Sr0.5TiO3 thin film as light sensor. The International Conference on Materials Science and Technology. 1(1), 287–290 (2010).
  • A. Ismangil, R.P. Jenie, and Irzaman. Irmansyah: Development of lithium tantalite (LiTaO3) for automatic switch on LAPAN-IPB satellite infra-red sensor. Procedia Environmental Sciences. 24, 329–334 (2015).
  • A. Kurniawan, D. Yosman, A. Arif, J. Juansah, and Irzaman: Development and application of Ba0.5Sr0.5TiO3 (BST) thin film as temperature sensor for satellite technology. Procedia Environmental Sciences. 24, 335–339 (2015).
  • Z.R. Khan, M.S. Khan, M. Zulfequar, and M.S. Khan: Optical and structural properties of ZnO thin films fabricated by sol-gel method. Materials Sciences and Applications. 2, 340–345 (2011).
  • M. Bouroushian, and T. Kosanovic: Characterization of thin films by low incidence X-Ray Diffraction. Crystal Structure Theory and Application. 1, 35–39 (2012).
  • R.D. Tarey, R.S. Rastogi, and K.L. Chopra: Characterization of thin films by glancing incidence X-Ray Diffraction. The Rigaku Journal. 4(1), 11–15 (1987).
  • X. Fan, X. Shen, A.Q. Liuc, and J. Kuo: Band gap opening of graphene by doping small boron nitride domains. Nanoscale. 4, 2157–2165 (2012).
  • K. van Benthem and C. Elsässer: Bulk electronic structure of SrTiO3: Experiment and theory. Journal of Applied Physics. 90(12), 6156–6164 (2001).
  • N. Serpone: Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J. Phys. Chem. 110, 24287–24293 (2006).
  • P.J. Collings: Simple measurement of the band Gap in silicon and germanium. A. J. Phys. 48(3), 197–199 (1980).
  • J. Millán, P. Godignon, and A.P. Tomás: Wide band gap semiconductor devices for power electronics. AUTOMATIKA. 53(2), 107–116 (2012).
  • B.G. Streetman: Solid State Electronic Devices. Michigan (US): Prentice Hall; (1995).
  • W.C. O’Mara, R.B. Herring, and L.P. Hunt: Handbook of Semiconductor Technology. Saddle River (US): Noyes Publications; (1990).
  • Y. Nishi and R. Doering: Handbook of Semiconductor Manufacturing Technology, 2nd ed. Boca Raton (US): CRC Press; (2007).
  • J.D. Cressler: Circuits and Applications Using Silicon Heterostructure Devices. London: CRC Press; (2007).
  • A.C. Diebold: Handbook of Silicon Semiconductor Metrology. Boca Raton: CRC Press; (2001).
  • W. Zhu, X. Qui, V. Iancu, X.Q. Chen, H. Pan, W. Wang, N.M. Dimitrijevic, T. Rajh, H.M. Meyer, M.P. Paranthaman, G.M. Stocks, H.H. Weitering, B. Gu, G. Eres, and Z. Zhang: Band gap of narrowing titanium oxide semiconductors by noncompensated anion-cation codoping for enhanced visible-light photoactivity. Phys Rev Lett. 103(22), 226401-1–226401-4 (2009).
  • A.S. Ahmed, M. Shafeeq, and M. Singla: Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles. J Luminescence. 131, 1–6 (2011).
  • M. Chakraborty, A. Ghosh, and R. Thangavel: Experimental and theoretical investigations of structural and optical properties of copper doped ZnO nanorods. J Sol-Gel Sci Technol. 74, 756–764 (2015).
  • H.J. Lee, S.Y. Jeong, C.R. Cho, and C.H. Park: Study of diluted magnetic semiconductor: Co-doped ZnO. Appl Phys Lett. 81(21), 4020–4022 (2002).
  • J. Chu and A. Sher: Physics and Properties of Narrow Gap Semiconductors (Microdevices). New York: Springer; (2008).
  • I. Hamberg, C.G. Granqvist, K.F. Berggren, B.E. Sernelius, and L. Engström: Band-gap widening in heavily Sn-doped In2O3. Phys Rev B Condens Matter. 30(6), 3240 (1984).
  • J. Wu, W. Walukiewicz, W. Shan, K.M. yu, III.J. W. Ager, E.E. Haller, H. lu, and W.J. Schaff: Effects of the narrow band gap on the properties of InN. Phys Rev B. 66, 201403-1–201403-4 (2002
  • A. Jain, P. Sagar, and R.M. Mehra: Band gap widening and narrowing in moderately and heavily doped n-ZnO films. Solid-State Electronics. 50, 1420–1424 (2006).
  • A. Walsh, J.L. F.D Silva, and S.H. Wei: Origins of band-gap renormalization in degenerately doped semiconductors. Phys Rev B. 78(7), 075211-1–075211-5 (2008).
  • J.S. Manser and P. Kamat: Band filling with free charge carriers in organometal halide perovskites. Nature Photonics. 8(9), 737–743 (2014).
  • O.V. Butov, K.M. Golant, A.L. Tomashuk, M.J. N. van Stralen, and A.H. E. Breuls: Refractive index dispersion of doped silica for fiber optics. Optics Comm. 213, 301–308 (2002).
  • T.J. Alwan: Refractive index dispersion and optical properties of dye-doped polystyrene films. Malaysian Polymer J. 5(2), 204–213 (2010).
  • P. Sharma and S.C. Katyal: Linear and nonlinear refractive index of As-Se-Ge and Bi doped As-Se-Ge thin films. J Appl Phys. 107(11), 113527 (2010).
  • C.M. Krowne and Y. Zhang: Physics of Negative Refraction and Negative Index Materials. New York: Springer; (2007).
  • M. Hotoleanu: Highly Doped Fiber Technology. In: Thévenaz L, ed. Advanced Fiber Optics: Concepts and Technology. Lausanne: EFPL Press; 127–144 2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.