Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 167, 2015 - Issue 1
1,458
Views
17
CrossRef citations to date
0
Altmetric
Review Article

Effect of Electric Field and Temperature on Dielectric Constant and Piezoelectric Coefficient of Piezoelectric Materials: A Review

, &
Pages 154-175 | Received 13 Aug 2015, Accepted 13 Aug 2015, Published online: 21 Dec 2015

References

  • W.G. Cady, Piezoelectricity, New York: Dover (1964).
  • T. Ikeda, Fundamentals of piezoelectricity, Oxford University Press (1996).
  • ANSI/IEEE Std 176-1987, IEEE Standard on Piezoelectricity (1988).
  • W. Smittakorn, and P.R. Heyliger, A Discrete-layer model of laminated hygrothermopiezoelectric plates, Mech. Comp. Mater. Struct. 7, 79–104 (2000).
  • D.A. Apte, and R. Ganguli, Influence of temperature and high electric field on power consumption by piezoelectric actuated integrated structure, Tech. Sci. Press 329, 1–23 (2009).
  • D. Wang, F. Yevgeniy, and P.C. Greg, Influence of temperature on electromechanical and fatigue behaviour of piezoelectric ceramics, J. Appl. Phys. 83, 5342–50 (1998).
  • V. Gupta, M. Sharma, and N. Thakur, Active structural vibration control: robust to temperature variations. Mech. Syst. Signal Process. 33, 167–180 (2012).
  • V. Gupta, M. Sharma, and N. Thakur, Active vibration control of a smart plate using a piezoelectric sensor-actuator pair at elevated temperatures. Smart Mater. Struct. 20, 105023-1–105023-13 (2011).
  • Q.M. Wang, T. Zhang, Q. Chen, and X.H. Du, Effect of DC bias field on complex materials coefficients of piezoelectric resonators, Sens. Actuator. 109, 149–155 (2003).
  • V. Birman, Physically nonlinear behaviour of piezoelectric actuators subject to high electric fields, US army research. Report no 45137.1 - E G - I I;Feb 2005.
  • M.K. Samal, P. Seshu, S. Parashar, U.V. Wagner, P. Hagedron, B.K. Dutta, and H.S. Khushwaha, A finite element model for nonlinear behavior of piezoceramics under weak electric fields. Finite Elem. Anal. Des. 41, 1464–1480 (2005).
  • M.K. Samal, P. Seshu, S. Parashar, U.V. Wagner, P. Hagedron, B.K. Dutta, and H.S. Khushwaha, Nonlinear behavior of piezoceramics under weak electric fields Part-I: 3-D finite element formulation. Int. J. Sol. Struct. 43, 1422–1436 (2006).
  • M.K. Samal, P. Seshu, S. Parashar, and B.K. Dutta, An analytical formulation in 3-D domain for nonlinear response of piezoelectric slabs under weak electric fields. Int. J. Sol. Struct. 44, 4656–4672 (2007).
  • V.D , Kugel, and L.E. Cross, Behaviour of Soft Piezoelectric Ceramics Under High Sinusoidal electric fields, J. Appl. Phys. 84, 2815–2830 (1998).
  • S. Jayant, and C. Inderjit, Fundamental Behaviour of Piezoceramic sheet Actuators, J. Intell. Mater. Syst. Struct. 11, 47–61 (Jan 2000).
  • A.J. Masys, W. Ren, G. Yang, and B.K. Mukherjee, Piezoelectric strain in lead zirconate titanate ceramics as a function of electric field, frequency and DC bias, J. Appl. Phys. 94, 1155–62 (2003).
  • L. Fei, X. Zhuo, Y.W. Xiao, and Y. Xi, Temperature and DC bias field – dependent piezoelectric effect of soft and hard lead zirconate titanate ceramics, J. Electroceram. 24, 294–299 (2010).
  • Q.M. Zhang, H. Wang, and J. Zhao, Effect of driving field and temperature on the response behaviour of ferroelectric actuator and sensor materials, J. Intell. Mater. Syst. Struct. 6, 84–93 (1995).
  • D. Damjanovic, and R.E. Newnham, Electrostricitve and piezoelectric materials for actuator application, J. Intell. Mater. Syst. Struct. 3, 190–208 (1992).
  • Z. Zhiquiang, Effective piezoelectricity of PZT-based relaxor ferroelectric compositions, Ferroelectr. 261, 33–42 (2001).
  • E.P. Delfin, J.E. Garcia, D.A. Ochoa, R. Perez, and F. Guerrero et al., Effect of Mn-acceptor dopant on dielectric and piezoelectric responses of lead lanthanum zirconate titanate piezoceramics, J. Appl. Phys. 110, 034106-1 – 034106-6 (2011).
  • C. Qingming, Z. Tao, and M.W. Qing, Frequency temperature Compensation of Piezoelectric resonators by electric DC bias field, IEEE Transactions on Ultraso. Ferroelectr. Freq. Control. 52(10), 1627–1631 (2005).
  • V.V. Spirin et al., Determination of piezoelectric coefficients of ferroelectric thin films using GaAs:Cr adaptive inferrometer, Opt. Laser Technol. 36, 337–340 (2004).
  • M. Deshpande, and S. Laxman, PZT thin films for low voltage actuation: Fabrication and characterization of the transverse piezoelectric coefficient, Sens. Actuators. 135, 690–699 (2007).
  • L. Saoping, C. Wenwu, and L.E. Cross, The extrinsic nature of non-linear behaviour observed in lead zirconate titanate ferroelectric ceramic, J. Appl. Phys. 69, 7219–24 (1991).
  • J. Nosek et al., About the measurements of the d33 piezoelectric coefficients of PZT film Si/SiO2/Ti/Pt substrate using an optical cryostat, Ferroelectr. 292, 103–109 (2003).
  • J.H. Oh et al., Electric field dependence of piezoelectric constants and resonance characteristics in modified PZT ceramics, Ferroelectr. 379, 7–14 (2009).
  • M. Sulc et al., Inferrometric measurement of the temperature dependence of piezoelectric coefficient for PZN-8%PT single crystal, Ferroelectr. 293, 283–290 (2003).
  • N.B. Chaim et al., Variation of dielectric constant of PZT ferroelectric ceramic with electric field, Ferroelectr. 6, 299–305 (1974).
  • D.S. Paik, and S.E. Paik, Dielectric and piezoelectric properties of perovskite materials at cryogenic temperatures, J. Mater. Sci. 34, 469–473 (1999).
  • L. Dabin, L. Zhenrong, L. Fei, X. Zhuo, and Y. Xi, Characterization and piezoelectric thermal stability of PIN-PMN-PT ternary ceramics near the morphotropic phase boundary, J. Alloy Comput. 489, 115–118 (2010).
  • V. Bobnar, X. Li, and G. Caser Tailoring electrically induced properties by stretching relaxor polymer films, J. Appl. Phys. 111, 083515-1 – 083515-4 (2012).
  • E. Sapper, S. Silke, J. Wook, G. Torseten, and R. Jurgen, Influence of electric fields on the depolarization temperature of Mn-doped (1-x) Bi1/2Na1/2Tio3-xbatio3, J. Appl. Phys. 111, 014105-1 – 014105-5 (2012).
  • D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics, Inst. Phys. 61, 1267–1324 (1998).
  • R. Jungho, J.J. Choi, and B.D. Hahn et al., Sintering and Piezoelectric Properties of KNN ceramic doped with KZT, IEEE Transactions on Ultraso. Ferroelectr. Freq. Control. 54(12), 2510–2515 (2007).
  • S. Zhang, J.B. Lim, J.L. Hyoeng, and R.S. Thomas, Characterization of hard piezoelectric Lead Free Ceramics, IEEE Transactions on Ultraso. Ferroelectr. Freq. Control 56(8), 1523–1530 (2009).
  • D.J. Kim, J.P. Maria, and A.I. Kingon, Evaluation of intrinsic and extrinsic contributions to the piezoelectric properties of Pb(Zr1-XTx)O3 thin film as a function of composition, J. Appl. Phys. 93(9), 5568–5575 (2003).
  • A.K. Arora, R.P. Tandon, and A. Mansingh, Piezoelectric, pyroelectric and dielectric properties of Lanthanum modified lead zirconate titanate, Ferroelectr.132, 9–25 (1992).
  • C. Fu, and Q. Cheng et al., Microstructure and dielectric properties of La-doped barium titanate hafnate ceramics, Integr. Ferroelectr. 139, 7–13 (2012).
  • C. Pamila, T.C. Goel, and P.K. Pillai, Pyroelectric, dielectric and resistivity studies on samarium modified PZT ceramic, Ferroelectr. 160, 157–164 (1994).
  • J. Sun et al., The ferroelectric, dielectric and piezoelectric properties of W-doped SrBi4Ti4O15, Integr. Ferroelectr. 98, 77–82 (2008).
  • F. Li, L. Jin, Z. Xu, D. Wang, and S. Zhang, Electrostricitve effect in Pb(Mg1/3Nb2/3)O3-x PbTiO3 crystals, Appl. Phys. Letters. 102, 152910-1 – 152910-5 (2013).
  • J. Chen et al., Ferroelectric properties and magnetoelectric effect in (1-x)Ni0.93 CO0.02 Cu0.05 Fe2O4 /xPZT particulate composites, Ferroelectr. 410, 29–36 (2011).
  • R.C. Kambale et al., Studies on structural and dielectric properties of CMFO ferrite and BZT ferroelectric magnetoelectric composites, Integr. Ferroelecr. 121, 1–12 (2010).
  • A. Ullah, W.A. Chang, A. Hussain, and W.K. Ill, The effect of sintering temperatures on dielectric, ferroelectric and electric field induced strain of lead free Bi0.5(Na0.78 K0.22)0.5TiO3 piezoelectric ceramic synthesized by sol-gel technique, Current Appl. Phys. 10, 1367–1371 (2010).
  • H. Jiang, and B. Shen et al., Switching of morphotropic phase boundry and large strain response in lead free ternary (Bi0.5 Na0.5) TiO3 (K0.5 Bi0.5)TiO­3(K0.5N0.5) NbO3 system, J. Appl. Phys. 113, 114106-1 – 114106-13 (2013).
  • S.H. Floarian et al., Influence of uniaxial stress on ferroelectric to paraelectric phase change in barium titanate, J. Appl. Phys. 113, 174103-1 – 174103-9 (2013).
  • H. Khemakhem et al., Phase transitions, piezoelectric and pyroelectric properties of KTa1-xNbxO3 ceramics (x = 0.3 and 0.4), Ferroelectr. 188, 88–93 (1996).
  • B. Huixin et al., A Modified lead free piezoelectric BZT-xBCT system with higher TC, Appl. Phys. Letter. 102, 162905-1 – 162905-5 (2013).
  • M.M. Maior et al., Piezoelectric properties of Sn2P2S6 ceramics, Ferroelectr. 33, 31–38 (2012).
  • P. Parjansri et al., Effect of Mn and Sr doping on the electrical properties of lead free 0.92BCZT-0.08BZT ceramics, Integr. Ferroelecr. 139, 75–82 (2012).
  • R. Ramesh, Y.S. Pereira, and V.T. K. Kumar, Estimation of certain material properties of a 1-3 piezoelectric composite as function of temperature, uniaxial stress and electric field, Ferroelectr. 423, 2–24 (2011).
  • E.B. Araujo, and J.A. Eiras, DC electric field dependence of the dielectric constant of PZT thin film prepared by polymeric precursor method, Ferroelectr. 370, 65–73 (2006).
  • F. Bossler, P. Escure, and M. Lejeune, Dielectric and piezoelectric properties of PbMgNb2/3O3-PbTiO3-PbZn1/3 Nb2/3O3 ceramics, Ferroelectr. 138, 103–112 (1993).
  • G. Li, and G. Haertling, Dielectric, ferroelectric and electric field induced strain properties of (Pb1-x Bax)(Zr1-yTiy)O3 ceramics, Ferroelectr. 166, 31–45 (1995).
  • G. Wang et al. , Temperature dependence of electrostrictive properties of PMN-PT-LA ceramics, Ferroelectr. 262, 201–206 (2001).
  • G. Singh et al., Thermal stability of piezoelectric coefficients in (Ba1-xCax)(Zr0.05 Ti0.95)O3: A lead free piezoelectric ceramic, Appl. Phys Letter. 102, 162905-1 – 162905-5 (2013).
  • K. Lee, and J. Yoo, Effects of AgNbO3 on microstructure, dielectric and piezoelectric properties of (Li,Na,K)(Nb,Ta,Sb,Cu)O3 system ceramics, Integr. Ferroelectr. 139, 55–62 (2012).
  • S.A. Gridnev, Dielectric relaxation in disordered polar dielectric, Ferroelectr. 266, 507–545 (2002).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.