Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 168, 2016 - Issue 1
190
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Experimental study on a wide-band piezoelectric energy harvester with rotating beams vibrating in perpendicular directions

&
Pages 85-96 | Accepted 29 Jul 2015, Published online: 20 Apr 2016

Reference

  • Y. Hu, H. A. Xue, and H. P. Hu. A piezoelectric power harvester with adjustable frequency through axial preloads.” Smart Materials & Structures 16, 1961–1966 (2007).
  • S. Roundy, and P. K. Wright. A piezoelectric vibration based generator for wireless electronics.” Smart Materials & Structures 13, 1131–1142 (2004).
  • H. A. Sodano, G. Park, and D. J. Inman. Estimation of electric charge output for piezoelectric energy harvesting.” Strain 40, 49–58 (2004).
  • C. D. Richards, M. J. Anderson, D. F. Bahr, and R. F. Richards: “Efficiency of energy conversion for devices containing a piezoelectric component.” Journal of Micromechanics and Microengineering 14, 717–721 (2004).
  • C. B. Williams, and R. B. Yates. Analysis of a micro-electric generator for microsystems.” Sensors and Actuators a-Physical 52, 8–11 (1996).
  • N. G. Elvin, AA Elvin, and M. Spector. A self-powered mechanical strain energy sensor.” Smart Materials & Structures 10, 293–299 (2001).
  • K. L. Ren, Y. M. Liu, X. C. Geng, H. F. Hofmann, and Q. M. M. Zhang. Single crystal PMN-PT/epoxy 1–3 composite for energy-harvesting application.” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 53, 631–638 (2006).
  • A. A. Badel, E. Lefeuvre, L. Lebrun, C Richard, and D. Guyomar. Single crystals and nonlinear process for outstanding vibration-powered electrical generators.” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 53, 673–684 (2006).
  • Y. K. Hong, and K. S. Moon. Single crystal piezoelectric transducers to harvest vibration energy.” 60480E-60480E-7 (2005).
  • J. Feenstra, J. Granstrom, and H. Sodano. Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack,” Mechanical Systems and Signal Processing. 22, 721–734 (2008).
  • G. W. Taylor, J. R. Burns, S. M. Kammann, W. B. Powers, and T. R. Welsh. The energy harvesting eel: A small subsurface ocean/river power generator,” IEEE Journal of Oceanic Engineering 26, 539–547 (2001).
  • S. Priya. Modeling of electric energy harvesting using piezoelectric windmill.” Applied Physics Letters 87, 3 (2005).
  • S. Priya, C. T. Chen, D. Fye, and J. Zahnd. Piezoelectric windmill: A novel solution to remote sensing.” Japanese Journal of Applied Physics Part 2-Letters & Express Letters 44, L104–L107 (2005).
  • G. A. Lesieutre, G. K. Ottman, and H. F. Hofmann. Damping as a result of piezoelectric energy harvesting.” Journal of Sound and Vibration 269, 991–1001 (2004).
  • P. J. Cornwell, J. Goethal, J. Kowko, and M. Damianakis. Enhancing power harvesting using a tuned auxiliary structure.” Journal of Intelligent Material Systems and Structures 16, 825–834 (2005).
  • S. Yu, S. He, and W. Li. Theoretical and experimental studies of beam bimorph piezoelectric power harvesters,” Journal of Mechanics of Materials and Structures. 5, 427–445 (2010).
  • S.. Roundy, and Y. Zhang. Toward self-tuning adaptive vibration based micro-generators. in Proc.” SPIE Smart Structures, Devices, and Systems 5649, 373–384 (2005).
  • E. S. Leland, and P. K. Wright. Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload.” Smart Mater, Struct 15, 1416–1420 (2006).
  • C. Eichhorn, F. Goldschmidtboeing, and P. Woias. A frequency tunable piezoelectric energy converter based on a cantilever beam.” in Proc of Power MEMS, 2008; 309–312.
  • D. J. Morris, J. M. Youngsman, M. J. Anderson, and D. F. Bahr. A resonant frequency tunable, extensional mode piezoelectric vibration harvesting mechanism.” Smart Mater, Struct 17, 1–8 (2008).
  • H. F. Zhang, P. H. Lee, and J. A. Kosinski. Experimental study of a frequency-adjustable piezoelectric bimorph energy harvester.” Ferroelectric 437, 36–46 (2012).
  • J. Loverich, R Geiger, and J. Frank. Stiffness nonlinearity as a means for resonance frequency tuning and enhancing mechanical robustness of vibration power harvesters.” In Proc. SPIE Smart Structures, Devices and Systems 6928, 692805 (2008).
  • X. Wu, J. Lin, S. Kato, K. Zhang, T. Ren, and L. Liu. A frequency adjustable vibration energy harvester.” in Proc. of Power MEMS 245–248, (2008).
  • H. Xue, Y. Hu, and Q. M. Wang. Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies.” IEEE Trans, Ultrason. Ferroelect. Freq. Contr 55(9), 2104–2108 (2008).
  • S. M. Shahruz. Design of mechanical band-pass filters with large frequency bands for energy scavenging. Mechatronics,” 16(9) 523–31 (2006).
  • S. M. Shahruz. Design of mechanical band-pass filters for energy scavenging: multi-degree-of-freedommodels.” J. Vib.Control 14(5), 753–768 (2008).
  • I. Sari, T. Balkan, and H. Kulah. An electromagnetic micro power generator for wideband environmental vibrations.” Sensors Actuators A 145/146, 405–413 (2007).
  • M. S. Soliman, E. M. Abdel-Rahman, E. F. El-Saadany, and R. R. Mansour. A wideband vibration-based energy harvester.” J. Micromech. Microeng 18 no. 11, 1–11 (2008).
  • D. J. Morris, J. M. Youngsman, M. J. Anderson, and D. F. Bahr. A resonant frequency tunable, extensional mode piezoelectric vibration harvesting mechanism.” Smart Mater. Struct 17 no. 6, 1–8 (2008).
  • Z. Yang, and J. Yang. Connected vibrating piezoelectric bimorph beams as a wide-band piezoelectric harvester.” J. Intell. Mater. Struc 20(5), 569–574 (2009).
  • I. Kim, H. Jung, B. M. Lee, and S. Jang. Broadband energy-harvesting using a two degree-of-freedom vibration body.” Applied Physics Letter 98, 214102 (2011).
  • G. Litak, M. I. Friswell, C. A. K. Kwuimy, S. Adhikari, and M. Borowiec. Energy harvesting by two magnetopiezoelastic oscillators with mistuning.” Theoretical and Applied Mechanics Letters 2, 043009 (2012).
  • K. Kucab, G. Gorski, and J. Mizia. Energy harvesting in the nonlinear two-masses piezoelastic system driven by harmonic excitations.” European Physical Journal-Special Topics 222, 1607–1616 (2013).
  • P. Li, F. Jin, and J. S. Yang. A Piezoelectric Energy Harvester With Increased Bandwidth Based on Beam Flexural Vibrations in Perpendicular Directions.” IEEE Trans, Ultrason, Ferroelect, Freq, Contr 60, 2214–2218 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.