Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 168, 2016 - Issue 1
134
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Adsorption of gas molecules and the induced magnetic properties of metal-decorated graphene

, , , &
Pages 97-106 | Accepted 13 Oct 2015, Published online: 20 Apr 2016

References

  • A. Geim. Graphene: status and prospects. Science 324, 1530 (2009).
  • Y. Sun, Q. Wu, and G. Shi. Graphene based new energy materials. Energy Environ. Sci. 4, 1113–1132 (2011).
  • C. Lee, X. Wei, J.W. Kysar, and J. Hone. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).
  • Y. N. Tang, C. G. Li, W. G. Chen, and X. Q. Dai. Geometric stability, electronic structure and reactivity of Pt4 cluster supported on defective graphene. Integr. Ferroelectr. 159, 57–65 (2015).
  • B. F. Machado, and P. Serp. Graphene-based materials for catalysis. Catal. Sci. Technol. 2, 54–75 (2012).
  • S. Guo, and S. Dong. Graphene and its derivative-based sensing materials for analytical devices. J. Mater. Chem. 21, 18503–18516 (2011).
  • F. Yavari, and N. Koratkar. Graphene-Based Chemical Sensors. J. Phys. Chem. Lett. 3, 1746–1753 (2012).
  • X. Liu, C. Z. Wang, Y. X. Yao, W. C. Lu, M. Hupalo, M. C. Tringides, and K. M. Ho. Bonding and charge transfer by metal adatom adsorption on graphene. Phys. Rev. B 83, 235411 (2011).
  • X. Q. Dai, Y. N. Tang, J. H. Zhao, and Y. W. Dai. Absorption of Pt clusters and the induced magnetic properties of graphene. J. Phys.: Condens. Matter 22, 316005 (2010).
  • Y. N. Tang, Y. W. Dai, B. Zhao, X. Q. Dai, and Z. X. Yang. Metal Adatoms Induced Stability, Electronic and Magnetic Behaviors on Graphene. Integr. Ferroelectr. 129, 102–110 (2011).
  • Y. N. Tang, Z. X. Yang, and X. Q. Dai. Noble metals induced magnetic properties of graphene. J. Magn. Magn. Mater. 323, 2441–2447 (2011).
  • A. Krasheninnikov, P. Lehtinen, A. Foster, P. Pyykkö, and R. Nieminen. Embedding transition-metal atoms in graphene: Structure, bonding, and magnetism. Phys. Rev. Lett. 102, 126807 (2009).
  • Y. N. Tang, Z. X. Yang, and X. Q. Dai. Trapping of metal atoms in the defects on graphene. J. Chem. Phys. 135, 224704 (2011).
  • Q. Tang, Z. Zhou, and Z. Chen. Graphene-related nanomaterials: tuning properties by functionalization. Nanoscale 5, 4541–4583 (2013).
  • Y. Zou, F. Li, Z. Zhu, M. Zhao, X. Xu, and X. Su. An ab initio study on gas sensing properties of graphene and Si-doped graphene. Eur. Phys. J. B 81, 475–479 (2011).
  • M. Zhou, Y. H. Lu, Y. Q. Cai, C. Zhang, and Y. P. Feng. Adsorption of gas molecules on transition metal embedded graphene: a search for high-performance graphene-based catalysts and gas sensors. Nanotechnology 22, 385502 (2011).
  • Y. N. Tang, Z. X. Yang, and X. Q. Dai. A theoretical simulation on the catalytic oxidation of CO on Pt/graphene. Phys. Chem. Chem. Phys. 14, 16566–16572 (2012).
  • J. Dai, and J. Yuan. Adsorption of molecular oxygen on doped graphene: Atomic, electronic, and magnetic properties. Phys. Rev. B 81, 165414 (2010).
  • Y. N. Tang, Z. Y. Liu, W. G. Chen, Z. M. Fu, W. Li, and X. Q. Dai. Stability, electronic and magnetic properties of Co-anchored on graphene sheets towards S, SH and H2S molecules. Eur. Phys. J. Appl. Phys. 70, 31301 (2015).
  • Y. N. Tang, Z. Y. Liu, W. G. Chen, Z. G. Shen, C. G. Li, and X. Q. Dai. Theoretical study on the removal of adsorbed sulfur on Pt anchored graphene surfaces. Int. J. Hydrogen Energy 40, 6942–6949 (2015).
  • Y. Lee, S. Lee, Y. Hwang, and Y.-C. Chung. Modulating magnetic characteristics of Pt embedded graphene by gas adsorption (N2, O2, NO2, SO2). Appl. Surf. Sci. 289, 445–449 (2014).
  • G. Kresse, and J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
  • G. Kresse, and J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
  • G. Kresse, and D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
  • J. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
  • J. Carlsson, and M. Scheffler. Structural, electronic, and chemical properties of nanoporous carbon. Phys. Rev. Lett. 96, 46806 (2006).
  • G. Henkelman, A. Arnaldsson, and H. Jónsson. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354–360 (2006).
  • Y. Lu, M. Zhou, C. Zhang, and Y. Feng. Metal-Embedded Graphene: A Possible Catalyst with High Activity. J. Phys. Chem. C 113, 20156–20160 (2009).
  • Y. N. Tang, X. Q. Dai, Z. X. Yang, L. J. Pan, W. G. Chen, D. W. Ma, and Z. S. Lu. Formation and catalytic activity of Pt supported on oxidized graphene for the CO oxidation reaction. Phys. Chem. Chem. Phys. 16, 7887–7895 (2014).
  • R. Singh, and P. Kroll. Magnetism in graphene due to single-atom defects: dependence on the concentration and packing geometry of defects. J. Phys.: Condens. Matter 21, 196002 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.