Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 168, 2016 - Issue 1
135
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Composition dependent electrocaloric behavior of (SrxBa1-x)Nb2O6 ceramics

, &
Pages 163-169 | Received 29 Oct 2015, Accepted 08 Feb 2016, Published online: 20 Apr 2016

References

  • J. Tušek, et al., The Elastocaloric Effect: A Way to Cool Efficiently. Advanced Energy Materials, (2015).
  • Y. Liu, et al., Giant Room‐Temperature Elastocaloric Effect in Ferroelectric Ultrathin Films. Advanced Materials, 26(35): p. 6132–6137 (2014).
  • M. Valant, Electrocaloric materials for future solid-state refrigeration technologies. Progress in Materials Science, 57(6): p. 980–1009 (2012).
  • X. Moya, S. Kar-Narayan, and N. Mathur, Caloric materials near ferroic phase transitions. Nature materials, 13(5): p. 439–450 (2014).
  • M. Ožbolt, et al., Electrocaloric vs. magnetocaloric energy conversion. International Journal of Refrigeration, 37: p. 16–27 (2014).
  • S. G. Lu and Q. Zhang, Electrocaloric Materials for Solid‐State Refrigeration. Advanced Materials, 21(19): p. 1983–1987 (2009).
  • E. Hegenbarth, Studies of the electrocaloric effect of ferroelectricceramics at low temperatures. Cryogenics, 1(4): p. 242–243 (1961).
  • W. Lawless, Recent topics in ferroelectric properties at low temperatures. Ferroelectrics, 24(1): p. 327–335 (1980).
  • L. Shebanovs, et al., Electrocaloric effect in some perovskite ferroelectric ceramics and multilayer capacitors. Ferroelectrics, 273(1): p. 137–142 (2002).
  • P. Thacher, Electrocaloric effects in some ferroelectric and antiferroelectric Pb(Zr,Ti)O3 compounds. Journal of Applied Physics, 39(4): p. 1996–2002 (1968).
  • J. Benepe and W. Reese, Electronic Studies of KH2PO4. Physical Review B, 3(9): p. 3032 (1971).
  • A. Huanosta and A. West, The electrical properties of ferroelectric LiTaO3 and its solid solutions. Journal of Applied Physics, 61(12): p. 5386–5391 (1987).
  • Y. Sinyavsky and V. Brodyansky, Experimental testing of electrocaloric cooling with transparent ferroelectric ceramic as a working body. Ferroelectrics, 131(1): p. 321–325 (1992).
  • M. Venet, et al., Diffuse phase transition and relaxor behaviour of textured Sr0.63Ba0.37Nb2O6 ceramics. Journal of Physics: Condensed Matter, 19(2): p. 026207 (2007).
  • L. E. Cross, Relaxor ferroelectrics. Ferroelectrics, 76(1): p. 241–267 (1987).
  • Z. Ye Relaxor ferroelectric complex perovskites: structure, properties and phase transitions. in Key Engineering Materials. Trans Tech Publ (1998).
  • G. A. e. Smolenskii, Physical phenomena in ferroelectrics with diffused phase transition. J. Phys. Soc. Jpn, 28(1): p. 26–37 (1970).
  • M. Roth, et al., Acoustic-emission-assisted study of critical phenomena responsible for giant piezoelectricity in relaxor ferroelectric crystals. Optimization of Composition, Structure and Properties of Metals, Oxides, Composities, Nano-and Amorphous Materials, 12: p. 121–133 (2012).
  • A. Ianculescu, et al., Phase formation mechanism and characteristics of strontium barium niobate ceramics. Journal of the European Ceramic Society, 27(2): p. 517–521 (2007).
  • W. J. Lee and T. T. Fang, Nonisothermal Reaction Kinetics of SrNb2O6 and BaNb2O6 for the Formation of SrxBa1−xNb2O6. Journal of the American Ceramic Society, 81(1): p. 193–199 (1998).
  • P. Lenzo, E. Spencer, and A. Ballman, Electro-optic coefficients of ferroelectric Strontium Barium Niobate. Applied Physics Letters, 11(1): p. 23–24 (1967).
  • A. Glass, Investigation of the electrical properties of Sr1−xBaxNb2O6 with special reference to pyroelectric detection. Journal of Applied Physics, 40(12): p. 4699–4713 (1969).
  • R. Neurgaonkar, et al., Czochralski single crystal growth of Sr0.61 Ba0.39Nb2O6 for surface acoustic wave applications. Materials Research Bulletin, 15(9): p. 1235–1240 (1980).
  • R. R. Neurgaonkar and W. K. Cory, Progress in photorefractive tungsten bronze crystals. JOSA B, 3(2): p. 274–282 (1986).
  • C. Huang, et al., Effects of A1/A2‐Sites Occupancy upon Ferroelectric Transition in (SrxBa1−x)Nb2O6 Tungsten Bronze Ceramics. Journal of the American Ceramic Society, 97(2): p. 507–512 (2014).
  • A. Wang, et al., Conoscopic interferometry for probing electro-optic coefficients of strontium calcium barium niobate crystal. Optics and Lasers in Engineering, 49(7): p. 870–873 (2011).
  • T. Lukasiewicz, et al., Strontium–barium niobate single crystals, growth and ferroelectric properties. Journal of Crystal Growth, 310(7): p. 1464–1469 (2008).
  • W. Huang, D. Viehland, and R. Neurgaonkar, Anisotropic glasslike characteristics of strontium barium niobate relaxors. Journal of Applied Physics, 76(1): p. 490–496 (1994).
  • K. Megumi, et al., The congruent melting composition of strontium barium niobate. Journal of Materials Science, 11(9): p. 1583–1592 (1976).
  • Y. Liu, et al., Prediction of giant elastocaloric strength and stress-mediated electrocaloric effect in BaTiO3 single crystals. Physical Review B, 90(10): p. 104107 (2014).
  • M. M. Vopson, Theory of giant-caloric effects in multiferroic materials. Journal of Physics D: Applied Physics, 46(34): p. 345304 (2013).
  • L. Mañosa, et al., Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. Nature materials, 9(6): p. 478–481 (2010).
  • C. J. Huang, et al., Variation of ferroelectric hysteresis loop with temperature in (SrxBa1−x)Nb2O6 unfilled tungsten bronze ceramics. Journal of Materiomics, (2015).
  • J. Leitner, et al., Thermodynamic properties of strontium metaniobate SrNb2O6. Journal of Thermal Analysis and Calorimetry, 91(3): p. 985–990 (2008).
  • A. Oral and M. Mecartney, Properties of sol-gel derived strontium barium niobate ceramics and the effect of V2O5 additive. Journal of Materials Science, 36(22): p. 5519–5527 (2001).
  • A. Chauhan, S. Patel, and R. Vaish, Elastocaloric effect in ferroelectric ceramics. Applied Physics Letters, 106(17): p. 172901 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.