101
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Rapid fabrication and characterization of spherical Mumetal nanoparticles by an electrical wire explosion process

, &
Pages 49-58 | Received 18 Aug 2015, Accepted 03 Feb 2016, Published online: 01 Jun 2016

References

  • Y. Lee, J. R. Choi, K. J. Lee, N. E. Stott, and D. Kim Large-scalesynthesisofcoppernanoparti-clesbychemicallycontrolledreductionforapplicationsofinkjet-printedelectronics. Nanotechnology. 19, 415604–415610 (2008).
  • Y. S. Lee, B. Bora, S. L. Yap, and C. S. Wong Effect of ambient air pressure on synthesis of copper and copper oxide nanoparticles by wire explosion process. Current Applied Physics. 12, 199–203 (2012).
  • I. V. Beketov, A. P. Safronov, A. V. Bagazeev, A. Larranaga, G. V. Kurlyandskaya, and A. I. Medvedev In situ modification of Fe and Ni magnetic nanopowders produced by the electrical explosion of wire. Journal of Alloys and Compounds. 586, S483–S488 (2014).
  • J. Llandro, J. J. Palfreyman, A. Ionescu, and C. H. W. Barnes Magnetic biosensor technologies for medical applications: a review. Med. Biol. Eng. Comput. 48, 977–998 (2010).
  • A. J. Collins, C. J. Prior, and R. C. J. Hicks The magnetic properties of r.f.-sputtered permalloy and Mumetal films. Thin Solid Films. 86, 165–174 (1981).
  • H. B. Nie, A. B. Pakhomov, X. Yan, X. X. Zhang, and M. Knobel, Giant magnetoimpedance in crystalline Mumetal. Solid State Commun. 112, 285–289 (1999).
  • W. S. Cho, H. Lee, and C. O. Kim Incremental permeability and magnetoimpedance effect in mumetal film annealed by using rapid temperature annealing technique. Thin Solid Films. 375, 51–54 (2000).
  • J. H. Wu, and D. D. L. Chung Combined use of magnetic and electrically conductive fillers in a polymer matrix for electromagnetic interference shielding. Journal of Electronic Materials. 37, 1088–1094 (2008).
  • M. F. Becker, J. R. Brock, H. Cai, D. E. Henneke, J. W. Keto, J. Lee, W. T. Nichols, and H. D. Glicksman Metal nanoparticles generated by laser ablation. Nanostruct Mater. 10, 853–863 (1998).
  • D. Vollath Plasma synthesis of nanopowders. J. Nanopart. Res. 10, 39–57 (2008).
  • J. Eastoe, M. J. Hollamby, and L. Hudson Recent advances in nanoparticle synthesis with reversed micelles. Adv. Colloid Interface Sci. 128–130, 5–15 (2006).
  • F. E. Kruis, H. Fissan, and A. Peled Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications-a review. J. Aerosol Sci. 29, 511–535 (1998).
  • Y. A. Kotov Electric explosion of wires as a method for preparation of nanopowders. J. Nanopart. Res. 5, 539–550 (2003).
  • S. Aravinth, B. Sankar, S. R. Chakravarthi, and R. Sarathi Generation and characterization of nano tungsten oxide particles by wire explosion process. Materials Characterization. 62, 248–255 (2011).
  • K. Murai, Y. Tokoi, H. Suematsu, W. Jiang, K. Yatsui, and K. Niihara Particle size controllability of ambient gas species for copper nanoparticles prepared by pulsed wire discharge. Jpn. J. Appl. Phys. 47, 3726–3730 (2008).
  • R. Sugunakar Reddy, M. Kamaraj, U. Kamachi Mudali, S. R. Chakravarthy, and R. Sarathi Generation and characterization of zirconium nitride nanoparticles bywire explosion process. Ceramics International. 38, 5507–5512 (2012).
  • Q. Wang, C. H. Li, M. Guo, C. W. Hu, and Y. C. Xie Controllable synthesis of zirconia nano-powders using vapor-phase hydrolysis and theoretical analysis. J. Mater. Chem. A. 2, 1346–1352 (2014).
  • N. Dahal, and V. Chikan Synthesis of hafnium oxide-gold core-shell nanoparticles. Inorg. Chem. 51, 518–522 (2012).
  • J. H. E. Cartwright, B, Escribano, and C. I. Sainz-Díaz Chemical-garden formation, morphology, and composition. I. effect of the nature of the cations. Langmuir. 27, 3286–3293 (2011).
  • G. LeBlanc, G. P. Chen, G. K. Jennings, and D. E. Cliffel Photoreduction of catalytic platinum particles using immobilized multilayers of photosystem I. Langmuir. 28, 7952–7956 (2012).
  • Y. Wang, Y. H. Shen, A. J. Xie, S. K. Li, X. F. Wang, and Y. Cai A simple method to construct bifunctional Fe3O4/Au hybrid nanostructures and tune their optical properties in the near-infrared region. J. Phys. Chem. C. 114, 4297–4301 (2010).
  • G. H. Gao, X. H. Liu, R. R. Shi, K. C. Zhou, Y. G. Shi, R. Z. Ma, E. Takayama-Muromachi, and G. Z. Qiu Shape-controlled synthesis and magnetic properties of monodisperse Fe3O4 nanocubes. Crystal Growth & Design. 10, 2888–2894 (2010).
  • S. Mondal, S. Mandal, L. Carrella, A. Jana, M. Fleck, A. Köhn, E. Rentschler, and S. Mohanta A series of MIICuII3 stars (M=Mn,Ni,Cu,Zn) exhibiting unusual magnetic properties. Inorg. Chem. 54, 117–131 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.