165
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Nitrogen-doped graphene oxide coated ZnO nanohybrid for lithium-ion batteries anode

&
Pages 10-20 | Received 14 Sep 2016, Accepted 07 Mar 2017, Published online: 02 Nov 2017

References

  • T. Nokami, T. Matsuo, Y. Inatomi, N. Hojo, T. Tsukagoshi, H. Yoshizawa, A. Shimizu, H. Kuramoto, K. Komae, H. Tsuyama, and J. Yoshida, Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity. J. Am. Chem. Soc. 134, 19694–19700 (2012).
  • X. Wang, L. Lv, Z. Cheng, et al., High-Density Monolith of N-Doped Holey Graphene for Ultrahigh Volumetric Capacity of Li-Ion Batteries. Adv. Energy Mater. 6 (2016).
  • M. D. Bhatt, and C. O'Dwyer, Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Phys. Chem. Chem. Phys. 17(7), 4799–4844 (2015).
  • N. Nitta, F. Wu, T. Lee J, et al., Li-ion battery materials: present and future. Mater. Today. 18(5), 252–264 (2015).
  • Z. Li, G. Wu, S. Deng, et al., Combination of uniform SnO2, nanocrystals with nitrogen doped graphene for high-performance lithium-ion batteries anode. Chem. Eng. J. 283, 1435–1442 (2016).
  • A. Magasinski, P. Dixon, B. Hertzberg, et al., High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9(4), 353–358 (2010).
  • I. Kovalenko, B. Zdyrko, A. Magasinski, et al., A major constituent of brown algae for use in high-capacity Li-ion batteries. Science. 334(6052), 75–9 (2011).
  • G. Wu, M. Wu, D. Wang, et al., A facile method for in-situ, synthesis of SnO2/graphene as a high performance anode material for lithium-ion batteries. Appl. Surf. Sci. 315(1), 400–406 (2014).
  • M. Saubanère, E. Mccalla, J. M. Tarascon, et al., The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energ. & Environ Sci. 225(1–2), 129–139 (2015).
  • Y. Zhao, X. Li, B. Yan, et al., Recent Developments and Understanding of Novel Mixed Transition-Metal Oxides as Anodes in Lithium Ion Batteries. Adv. Energy Mater. 6(8), n/a–n/a (2016).
  • I. Kovalenko, B. Zdyrko, A. Magasinski, et al., A major constituent of brown algae for use in high-capacity Li-ion batteries. Science. 334(6052), 75–9 (2011).
  • Y. Wang, T. Wang, P. Da, et al., ChemInform Abstract: Silicon Nanowires for Biosensing, Energy Storage, and Conversion. Adv. Mater. 25(37), 5177–95 (2013).
  • G. Wu, Z. Li, W. Wu, et al., Effects of calcination on the preparation of carbon-coated SnO2/graphene as anode material for lithium-ion batteries. J. Alloys Compd. 615(2), 582–587 (2014).
  • X. Shen, D. Mu, C. Shi, et al., Enhanced Electrochemical Performance of ZnO-Loaded/Porous Carbon Composite as Anode Materials for Lithium Ion Batteries. Acs Appl. Mater. Inter. 5(8), 3118–3125 (2013).
  • J. Dai, M. Wang, M. Song, et al., A novel synthesis of ZnO/N-doped reduced graphene oxide composite as superior anode material for lithium-ion batteries. Scripta Mater. 112, 67–70 (2016).
  • G. Zhang, S. Hou, Z. Hang, et al., High-Performance and Ultra-Stable Lithium-Ion Batteries Based on MOF-Derived ZnO@ZnO Quantum Dots/C Core-Shell Nanorod Arrays on a Carbon Cloth Anode. Adv. Mater. 27(14), 2400–5 (2015).
  • P. Li, Y. Liu, J. Liu, et al., Facile synthesis of ZnO/mesoporous carbon nanocomposites as high-performance anode for lithium-ion battery. Chem. Eng. J. 271, 173–179 (2015).
  • L. Xia, S. Wang, G. Liu, et al., Flexible SnO2/N-Doped Carbon Nanofiber Films as Integrated Electrodes for Lithium-Ion Batteries with Superior Rate Capacity and Long Cycle Life. Small. 12 (2015).
  • H. Song, N. Li, H. Cui, et al., Enhanced storage capability and kinetic processes by pores- and hetero-atoms-riched carbon nanobubbles for lithium-ion and sodium-ion batteries anodes. Nano Energy. 4(3), 81–87 (2014).
  • H. P. Cong, S. Xin, and S. H. Yu, Flexible nitrogen-doped graphene/SnO2, foams promise kinetically stable lithium storage. Nano Energy. 13, 482–490 (2015).
  • F. Zheng, Y. Yang, and Q. Chen, High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. commun. 5 (2014).
  • H. Hu, Z. Zhao, Q. Zhou, Y. Gogotsi, and J. Qiu, The role of microwave absorption on formation of graphene from graphite oxide. Carbon. 50, 3267–3273 (2012).
  • Z. U. Liwu, Y. Zhang, X. Wang, et al., Preparation Technology and Characterization of Graphene. Mater. Rev. S2, (2014).
  • X. Wang, Q. Weng, X. Liu, X. Wang, D. Tang, W. Tian, C. Zhang, W. Yi, D. Liu, Y. Bando, and D. Golberg, Atomistic origins of high rate capability and capacity of N-doped graphene for lithium storage. Nano Lett. 14, 1164–1171 (2014).
  • D. Sun, R. Ban, P. H. Zhang, G. H. Wu, J. R. Zhang, and J. J. Wu, Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon. 64, 424–434 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.