53
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Numerical studies on sub-10 nanometer resolution imaging in electrostatic force microscopy

, , , &
Pages 148-160 | Received 30 Nov 2016, Accepted 07 Mar 2017, Published online: 02 Nov 2017

References

  • J. E. Stern, B. D. Terris, H. J. Mamin, and D. Rugar, Deposition and imaging of localized charge on insulator surfaces using a force microscope. Appl. Phys. Lett. 53(26), 2717 (1988).
  • M. Nonnenmaccher, M. P. Oboyle, and H. K. Wickramasinghe, Kelvin probe force microscopy. Appl. Phys. Lett. 58(25), 2921 (1991).
  • U. Zerweck, C. Loppacher, T. Otto, and L. M. S. Eng Grafström, Kelvin probe force microscopy of C60 on metal substrates: towards molecular resolution. Nanotechnology 18, 084006 (2007).
  • S. Kawai, Th. Glatzel, H.-J. Hug, and E. Meyer, Atomic contact potential variations of Si(111)-7 × 7 analyzed by Kelvin probe force microscopy. Nanotechnology 21, 245704 (2010).
  • G. H. Enevoldsen, T. Glatzel, M. C. Christensen, J. V. Lauritsen, and F. Besenbacher, Atomic Scale Kelvin Probe Force Microscopy Studies of the Surface Potential Variations on the TiO2110 Surface. Phys. Rev. Lett. 100(23), 236104 (2008).
  • F. Bocquet, L. Nony, and C. Loppacher, Analytical approach to the local contact potential difference on (001) ionic surfaces: Implications for Kelvin probe force microscopy. Phys. Rev. B 78(3), 035410 (2008).
  • N. Gaillard, M. Gros-Jean, D. Mariolle, F. Bertin, and A. Bsiesy, Method to assess the grain crystallographic orientation with a submicronic spatial resolution using Kelvin probe force microscope. Appl. Phys. Lett. 89, 154101 (2006).
  • A. K. Sinensky, and A. M. Belcher, Label-free and high-resolution protein/DNA nanoarray analysis using Kelvin probe force microscopy. Nat. Nanotechnol. 2, 653–659 (2007).
  • E. Palacios-Lidón, B. Pérez-García, and J. Colchero, Enhancing dynamic scanning force microscopy in air: as close as possible. Nanotechnology 20, 085707 (2009).
  • N. R. Wilson, and J. V. Macpherson, Enhanced resolution electric force microscopy with single-wall carbon nanotube tips. J. Appl. Phys. 96(6), 3565–3567 (2004).
  • X. D. Ding, J. An, J. B. Xu, C. Li, and R. Y. Zeng, Improving lateral resolution of electrostatic force microscopy by multifrequency method under ambient conditions. Appl. Phys. Lett. 94(22), 223109 (2009).
  • U. Zerweck, C. Loppacher, T. Otto, S. Grafström, and L. M. Eng, Accuracy and resolution limits of Kelvin probe force microscopy. Phys. Rev. B 71(12), 125424 (2005).
  • Th. Glatzel, S. Sadewasser, and M. Ch. Lux-Steiner, Amplitude or frequency modulation-detection in Kelvin probe force microscopy. Appl. Surf. Sci. 210, 84–89 (2003).
  • L. Nony, F. Bocquet, C. Loppacher, and Th. Glatzel, On the relevance of the atomic-scale contact potential difference by amplitude-modulation and frequency-modulation Kelvin probe force microscopy. Nanotechnology 20, 264014 (2009).
  • S. Guriyanova, D. S. Golovko, and E. Bonaccurso, Cantilever contribution to the total electrostatic force measured with the atomic force microscope. Meas. Sci. Technol. 21, 025502 (2010).
  • D. Ziegler, and A. Stemmer, Force gradient sensitive detection in lift-mode Kelvin probe force microscopy. Nanotechnology 22, 075501 (2011).
  • S. Belaidi, F. Lebon, P. Girard, G. Leveque, and S. Pagano, Finite element simulations of the resolution in electrostatic force microscopy. Appl. Phys. A 66, S239–243 (1998).
  • S. Gómez-Moñivas, L. S. Froufe, R. Carminati, J. J. Greffet, and J. J. Sáenz, Tip-shape effects on electrostatic force microscopy resolution. Nanotechnology 12, 496 (2001).
  • H. O. Jacobs, P. Leuchtmann, O. J. Homan, and A. Stemmer, Resolution and contrast in Kelvin probe force microscopy. J. Appl. Phys. 84, 1168–1173 (1998).
  • G. Lévêque, P. Cadet, and R. Arinero, Sensitivity and resolution in noncontact electrostatic force microscopy in the case of a constant potential. Phys. Rev. B 71(20), 205419 (2005).
  • Y. X. Shen, M. H. Lee, W. Y. Lee, D. M. Barnett, P. M. Pinsky, and F. B. Prinz, A resolution study for electrostatic force microscopy on bimetallic samples using the boundary element method. Nanotechnology 19, 035710 (2008).
  • J. Colchero, A. Gil, and A. M. Baró, Resolution enhancement and improved data interpretation in electrostatic force microscopy. Phys. Rev. B 64(24), 245403 (2001).
  • H. N. McMurray, and G. Williams, Probe diameter and probe–specimen distance dependence in the lateral resolution of a scanning Kelvin probe. J. Appl. Phys. 91(3), 1673–1679 (2002).
  • C. Riedel, A. Alegría, G. A. Schwartz, J. Colmenero, and J. Sáenz, Numerical study of the lateral resolution in electrostatic force microscopy for dielectric samples. Nanotechnology 22, 285705 (2011).
  • W. A. Ducker, and R. F. Cook, Rapid measurement of static and dynamic surface forces. Appl. Phys. Lett. 56, 2408 (1990).
  • Y. Martin, C. C. Willams, and H. K. Wickramasinghe, Atomic force microscope-force mapping and profiling on a sub 100 Å scale. J. Appl. Phys. 61(10), 4723–4729 (1987).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.