65
Views
0
CrossRef citations to date
0
Altmetric
Section B: Bio-Medical Applications

Dielectric behaviour of neutrophil gelatinase associated lipocalin detected by alpha relaxation process

, , , &
Pages 55-68 | Received 07 Nov 2016, Accepted 22 Apr 2017, Published online: 05 Dec 2017

References

  • J. Mishra, Q. Ma, A. Prada, M. Mitsnefes, K. Zahedi, J. Yang, J. Barasch, and P. Devarajan, Identification of Neutrophil Gelatinase-associated Lipocalin as a Novel Early Urinary Biomarker for Ischemic Renal Injury. J. Am. Soc. Nephrol 14, 2534–43 (2003).
  • W. K. Han, S. S. Waikar, A. Johnson, R. A. Betensky, C. L. Dent, P. Devarajan, and J. V. Bonventre, Urinary Biomarkers in the Early Diagnosis of Acute Kidney Injury. Kidney Int. 73, 863–69 (2008).
  • G. Wagner, M. Jan, M. Kim, K. Mori, J. M. Barasch, R. N. Sladen, and H. T. Lee, Association between increases in Urinary Neutrophil Gelatinase–associated Lipocalin and Acute Renal Dysfunction after adult cardiac surgery. Anesthesiology 105, 485–91 (2006).
  • J. Mishra, C. Dent, R. Tarabishi, M. M. Mitsnefes, Q. Ma, C. Kelly, S. M. Ruff, K. Zahedi, M. Shao, J. Bean, K. Mori, J. Barasch, and P. Devarajan, Neutrophil Gelatinase-associated Lipocalin (NGAL) as a Biomarker for Acute Renal Injury after Cardiac Surgery. Lancet 365, 1231–38 (2005).
  • P. Kannan, H. Y. Tiong, and D. H. Kim, Highly Sensitive Electrochemical determination of Neutrophil Gelatinase-associated Lipocalin for Acute Kindney Injury. Biosen. Bioelectron. 31, 32–36 (2012).
  • C. Berggren, B. Bjarnason, and G. Johansson, An immunological Interleukine-6 Capacitive Biosensor using Perturbation with a Potentiostatic step. Biosens. Bioelectron. 13, 1061–1068 (1998).
  • P. M. Suherman, P. Taylor, and G. Smith, Low Frequency Dielectric study of Hydrated of Albumin. J. Non-Cryst. Solids 305, 317–321 (2002).
  • M. Nakanishi, and A. P. Sokolov, Protein dynamics in a broad frequency range: Dielectric spectroscopy studies. J. Non-Cryst. Solids 407, 478–485 (2015).
  • N. Q. Vinh, S. J. Allen, and K. W. Plaxco, Dielectric Spectroscopy of Proteins as a quantitative experimental test of computational models of their low-frequency harmonic motions. J. Am. Chem. Soc. 133, 8942–8947 (2011).
  • A. Oleinikova, P. Sasisanker, and H. Weingärtner, What can really be learned from dielectric spectroscopy of protein solutions? A case study of ribonuclease A. J. Phys. Chem. B 108, 8467–8474 (2004).
  • M. Wolf, R. Gulich, P. Lunkenheimer, and A. Loidl, Relaxation dynamics of a protein solution investigated by dielectric spectroscopy. Biochimica et Biophysica Acta (BBA)- Proteins and Proteomics 1824, 723–730 (2012).
  • N. Miura, Y. Hayashi, and S. Mashimo, Hinge-bending deformation of enzyme observed by microwave dielectric measurement. Biopolymers 39, 183–187 (1996).
  • C. Cametti, S. Marchetti, C. M. C. Gambi, and G. Onori, Dielectric relaxation spectroscopy of lysozyme aqueous solutions: analysis of the δ-dispersion and the contribution of the hydration water. J. Phys. Chem. B 115, 7144–7153 (2011).
  • J. P. Rossell, S. Allen, M. C. Davies, C. J. Roberts, S. J. B. Tendler, and P. M. Williams, Electrostatic interactions observed when imaging proteins with the atomic force microscope. Ultramicroscopy 96, 37–46 (2003).
  • N. Taniguchi, K. Fukao, P. Sotta, and D. R. Long, Dielectric relaxation of thin films of polyamide random copolymers. Phys. Rev. E 91, 52605–52613 (2015).
  • G. Barbero, and A. L. Alexe-ionescu, Role of the diffuse layer of the ionic charge on the impedance spectroscopy of a cell of liquid. Liq. Crys. 32, 943–949 (2005).
  • O. Z. Stern, On the theory of electrical double layer. Electrochemistry 30, 508–516, (1924).
  • J. A. Schellman, and D. Strigter, Electrical double layer, zeta potential and electrophoretic charge on DNA. Biopolymers 16, 1415–1434 (1977).
  • R. Burt, G. Birkett, and X. S. Zhao, A review of molecular modelling of electric double layer capacitors. Phys. Chem. Chem. Phys. 16, 6519–6538 (2014).
  • PDB ID: 1dfv, D. H. Goetz, S. T. Willie, R. S. Armen, T. Bratt, N. Borregaard, and R. K. Strong, Biochemistry 39, 1935–1940 (2000).
  • Y. Feldman, A. Andrianov, E. Polygalov, I. Ermolina, G. Romanychev, Y. Zuev, and B. Milgotin, Time domain dielectric spectroscopy: An advanced measuring system. Rev. Sci. Instrum. 67, 3208–3216 (1996).
  • O. V. Galzitskaya, and A. V. Finkelstein, A theoretical search for folding/unfolding nuclei in three-dimensional protein structures,Proc. Natl Acad. Sci. USA 96, 11299–11304 (1999).
  • G. Singh, G. V. Prakash, S. Kaur, A. Choudhary, and A. M. Biradar, Molecular relaxation in homeotropically aligned ferroelectric liquid crystals. Physica B 403, 3316–3319 (2008).
  • A. W. P. Vermeer, and N. Willem, The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein. Biophysic. J. 78, 394–404 (2000).
  • S. Y. Sheu, D. Y. Yang, H. L. Selzle and E. W. Schlag, Energetics of hydrogen bonds in peptides. PNAS 100, 12683–12687 (2003).
  • Y. Hayashi, N. Miura, J. Isobe, N. Shinyashiki, and S. Yagihara, Molecular dynamics of hinge-bending motion of IgG vanishing with hydrolysis by papain. Biophys. J. 79, 1023–1029 (2000).
  • W. Wang, C. J. Roberts, Non-Arrhenius protein aggregation. AAPS J. 15, 840–851 (2013).
  • G. Bruylants, J. Wouters, and C. Michaux, Differential scanning calorimetry in life science: thermodynamics, stability, molecular recognition and application in drug design. Curr. Med. Chem. 12, 2011–2020 (2005).
  • F. Offredi, F. Dubail, P. Kischel, K. Sarinski, A. S. Stern, C. Van de Weerdt, J. C. Hoch, C. Prosperi, J. M. Francois, S. L. Mayo, and J. A. Martial, De novo backbone and sequence design of an idealized alpha/beta-barrel protein: evidence of stable tertiary structure. J. Mol Biol. 325, 163–174 (2003).
  • D. Ejima, K. Tsumoto, H. Fukada, R. Yumioka, K. Nagase, T. Arakawa, and J. S. Philo, Effects of acid exposure on the conformation, stability, and aggregation of monoclonal antibodies. Proteins 66, 954–962 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.