Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 183, 2017 - Issue 1
45
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Controllable deposition of titanium dioxides onto carbon nanotubes in aqueous solutions

, , , , , & show all
Pages 43-53 | Received 20 Jan 2017, Accepted 23 Aug 2017, Published online: 11 Dec 2017

References

  • S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).
  • R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Carbon nanotubes-the route toward applications. Science 297, 787–792 (2002).
  • A. C. Dillon, Carbon nanotube for photoconversion and electrical energy storage. Chem. Rev. 110, 6856–6872 (2010).
  • D. Eder, Carbon nanotube-inorganic hybrids. Chem. Rev. 110, 1348–1385 (2010).
  • D. M. Guldi, G. M. A. Rahman, G. M. A. Zerbetto, and M. Prato, Carbon nanotubes in electron donor-acceptor nanocomposites. Acc. Chem. Res. 38, 871–878 (2005).
  • H. Sun, Z. Xu, and C. Gao, Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 25, 2554–2560 (2013).
  • M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Lizmarzán, Directed self-assembly of nanoparticles. ACS Nano 4, 3591–3605 (2010).
  • A. Spende, N. Sobel, M. Lukas, R. Zierold, J. C. Riedl, L. Gura et al. TiO2, SiO2, and Al2O3 coated nanopores and nanotubes produced by ALD in etched ion-track membranes for transport measurements. Nanotechnology 26, 655–663 (2015).
  • M. Q. Yang, N. Zhang, and Y. J. Xu, Synthesis of fullerene-, carbon nanotube-, and graphene-TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study. ACS Appl. Mater. Interfaces 5, 1156–1164 (2013).
  • K. Woan, G. Pyrgiotakis, and W. Sigmund, Photocatalytic carbon-nanotube-TiO2 composites. Adv. Mater. 21, 2233–2239 (2009).
  • Z. Wen, Q. Wang, Q. Zhang, and J. Li, In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: a novel composite with porous-tube structure as anode for lithium batteries. Adv. Funct. Mater. 17, 2772–2778 (2007).
  • Z. Wang, G. Chen, and D. Xia, Coating of multi-walled carbon nanotube with SnO2 films of controlled thickness and its application for Li-ion battery. J. Power Sources 184, 432–436 (2008).
  • L. L. Suriyasena, X. Xu, G. Pitner, Z. Bao, and H. S. Wong, VLSI-compatible carbon nanotube doping technique with low work-function metal oxides. Nano Lett 14, 1884–1890 (2014).
  • A. Fujishim, and A. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).
  • X. Chen, and S. S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007).
  • A. Fujishima, X. Zhang, and D. A. Tryk, TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep 63, 515–582 (2008).
  • M. Kapilashrami, Y. Zhang, Y. S. Liu, A. Hagfeldt, and J. Guo, Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem. Rev. 114, 9662–9707 (2014).
  • L. Sang, Y. Zhao, and C. Burda, TiO2 nanoparticles as functional building blocks. Chem. Rev. 114, 9283–9318 (2014).
  • L. B. Piccoli, R. V. B. Henriques, E. Fabres, E. L. Schneider, and C. E. Pereira, Titanium nanostructures for biomedical applications. Nanotechnology 26, 062002 (2015).
  • M. Dahl, Y. Liu, and Y. Yin, Composite titanium dioxide nanomaterials. Chem. Rev. 114, 9853–9889 (2014).
  • M. Shiraishi, and M. Ata, Work function of carbon nanotubes. Carbon 39, 1913–1917 (2001).
  • L. Ma, A. Chen, Z. Zhang, J. Lu, H. He, and C. Li, In-situ fabrication of CNT/TiO2 interpenetrating network film on nickel substrate by chemical vapour deposition and application in photoassisted water electrolysis. Catal. Commun 21, 27–31 (2012).
  • S. Orlanducci, V. Sessa, M. L. Terranova, G. A. Battiston, S. Battiston, and R. Gerbasi, Nanocrystalline TiO2 on single walled carbon nanotube arrays: Towards the assembly of organized C/TiO2 nanosystems. Carbon 44, 2839–2843 (2006).
  • B. Liu, and H. C. Zeng, Carbon nanotubes supported mesoporous mesocrystals of anatase TiO2. Chem. Mater 20, 2711–2718 (2008).
  • K. Hernadi, E. Ljubović, J. W. Seo, and L. Forró, Synthesis of MWNT-based composite materials with inorganic coating. Acta Mater 51, 1447–1452 (2003).
  • S. Lee, and W. M. Sigmund, Formation of anatase TiO2 nanoparticles on carbon nanotubes. Chem. Commun 9, 780–781 (2003).
  • J. Li, S. Tang, L. Lu, and H. C. Zeng, Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly. J. Am. Chem. Soc 129, 9401–9409 (2007).
  • K. E. Tettey, M. Q. Yee, and D. Lee, Photocatalytic and conductive MWCNT/TiO2 nanocomposite thin films. ACS Appl. Mater. Interfaces 2, 2646–2652 (2010).
  • J. Lu, J. B. Zang, S. X. Shan, H. Huang, and Y. H. Wang, Synthesis and characterization of core-shell structural MWNT-zirconia nanocomposites. Nano Lett 8, 4070–4074 (2008).
  • J. Huang, J. Zang, Y. Zhao, L. Dong, and Y. Wang, One-step synthesis of nanocrystalline TiO2-coated carbon nanotube support for Pt electrocatalyst in direct methanol fuel cell. Mater. Lett 137, 335–338 (2014).
  • U. M. Patil, S. B. Kulkarni, P. R. Deshmukh, R. R. Salunkhe, C. D. Lokhande, and J. Alloy, Photosensitive nanostructured TiO2 grown at room temperature by novel “bottom-up” approached CBD method. Compd 509, 6196–6199 (2011).
  • S. Yamabi, and H. Imai, Crystal phase control for titanium dioxide films by direct deposition in aqueous solutions. Chem. Mater 14, 609–614 (2002).
  • A. A. Gribb, and J. F. Banfield, Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. Am. Mineral 82, 717–728 (1997).
  • S. Girish Kumar, and K. S. R. Koteswara Rao, Polymorphic phase transition among the titania crystal structures using a solution-based approach: from precursor chemistry to nucleation process. Nanoscale 6, 11574–11632 (2014).
  • S. T. Aruna, S. Tirosh, and A. Zaban, Nanosize rutile titania particle synthesis via a hydrothermal method without mineralizers. J. Mater. Chem 10, 2388–2391 (2000).
  • D. Dambournet, I. Belharouak, and K. Amine, Tailored preparation methods of TiO2 anatase, rutile, brookite: mechanism of formation and electrochemical properties. Chem. Mater 22, 1173–1179 (2010).
  • R. H. Bradley, K. Cassity, R. Andrewsv, M. Meier, S. Osbeck, A. Andreu et al. Surface studies of hydroxylated multi-wall carbon nanotubes. Appl. Surf. Sci 258, 4835–4843 (2012).
  • M. Cargnello, M. Grzelczak, B. Rodríguez-González, Z. Syrgiannis, K. Bakhmutsky, V. La Parola et al. Multiwalled carbon nanotubes drive the activity of metal@oxide core-shell catalysts in modular nanocomposites. J. Am. Chem. Soc 134, 11760–11766 (2012).
  • K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscow, R. A. Pierotti, J. Rouquérol et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem 57, 603–619 (1985).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.