114
Views
1
CrossRef citations to date
0
Altmetric
SACT2016

Enhanced dielectric and ferroelectric behavior in 0.94BNT-0.06BCTS lead free piezoelectric ceramics synthesized by the solid state combustion technique

, , &
Pages 20-32 | Received 15 Dec 2016, Accepted 31 Jul 2017, Published online: 05 Apr 2018

References

  • B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric ceramics. Academic Press, London; (1971).
  • J. F. Tressler and S. Alkoy, Newnham RE: Piezoelectric sensors and sensor materials, J Electroceram. 2, 257–272 (1998).
  • G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainik, New ferroelectrics of complex composition, Phys Solid State. 11, 2651–2654 (1961).
  • Y. M. Li, W. Chen, J. Zhou, Q. Xu, H. J. Sun, and M. S. Lia, Dielectric and ferroelectric properties of lead-free Na0.5Bi0.5TiO3–K0.5Bi0.5TiO3 ferroelectric ceramics, Ceram Int. 311, 139–142 (2005).
  • J. Suchanicz, Behavior of Na0.5Bi0.5TiO3 ceramics in the a.c. electric field, Ferroelectrics. 209, 561–568 (1998).
  • A. Watcharapasorn, S. Jiansirisomboon, and T. Tunkasiri, Sintering of Fe-doped Bi0.5Na0.5TiO3 at < 1000°C, Mater Lett. 61, 2986–2989 (2007).
  • H. Lidjici, M. Rguiti, F. Hobar, C. Courtois, and A. Leriche, Solid state sintering prepared 0.935(Bi0.5Na0.5)TiO3-0.065BaTiO3 lead-free ceramics: effect of sintering temperature, Ceramics Silikáty. 54, 253–257 (2010).
  • Z. Yang, B. Liu, L. Wei, and Y. Hou, Structure and electrical properties of (1− x) Bi0.5Na0.5TiO3–xBi0.5K0.5TiO3 ceramics near morphotropic phase boundary, Mater Res Bull. 43, 81–89 (2008).
  • W. Bai, F. Lui, P. Li, B. Shen, J. Zhai, and H. Chen, Structure and electromechanical properties in Bi0.5Na0.5TiO3-based lead-free piezoceramics with calculated end-member Bi(Ni0.5Ti0.5)O3, J Euro Ceram Soc. 35, 3457–3466 (2015).
  • A. B. Kounga, S. T. Zhang, W. Jo, T. Granzow, and J. Rodel, Morphotopic phase boundary in (1-x)B0.5N0.5TiO3-xK0.5Na0.5NbO3 lead-free piezoelectric, Appl Phys Lett. 92, 222902 (2008).
  • Q. Gou, J. G. Wu, A. Li, B. Wu, D. Q. Xiao, and J. G. Zhu, Enhanced d33 value of B0.5N0.5TiO3-(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 lead-free ceramics, J Alloys Compd. 521, 4–7 (2012).
  • B. Wu, D. Xiao, W. Wu, J. Zhu, Q. Chen, and J. Wu, Microstructure and electrical properties of (Ba0.98Ca0.02)(Ti0.94Sn0.06)O3-modified Bi0.51Na0.50TiO3 lead-free ceramics, Ceram Int. 38, 5677–5681 (2012).
  • L. F. Zhu, B. P. Zhang, L. Zhao, S. Li, Y. Zhou, X. C. Shi, and N. Wang, Large piezoelectric effect of (Ba, Ca)TiO3–xBa(Sn, Ti)O3 lead-freeceramics, J Euro Ceram Soc. 36, 1017–1024 (2016).
  • P. Julphunthong and T. Bongkarn, Phase formation, microstructure and dielectric properties of Ba(Zr0.1Ti0.9)O3 ceramics prepared via the combustion technique, Curr Appl Phys. 11, S60–S65 (2013).
  • P. Bhupaijit, C. Kornphom, N. Vittayakorn, and T. Bongkarn, Structural, microstructure and electrical properties of La2O3-doped (Bi0.5Na0.68K0.22Li0.05)TiO3 lead-free piezoelectric ceramics synthesized by the combustion technique, Ceram Int. 41, 81–86 (2015).
  • R. Sumang, D. P. Cann, N. Kumar, and T. Bongkarn, Large strain in lead-free piezoelectric (1−x−y)Bi0.5Na0.5TiO3–xBi0.5K0.5TiO3–yBi0.5Li0.5TiO3 system near MPB prepared via the combustion technique, Ceram Int. 41, S127–S135 (2015).
  • T. Bongkarn, S. Chootin, S. Pinitsoontorn, and S. Maensiri, Excellent piezoelectric and ferroelectric properties of KNLNTS ceramics with Fe2O3 doping synthesized by the solid state combustion technique, J Alloys Compd. 682, 14–21 (2016).
  • C. Kornphom, N. Vittayakorn, and T. Bongkarn, Lead-free piezoelectric ceramics based on (1-x)BNKLLT-BCTZ binary solid solutions synthesized by the solid-state combustion technique, J Mater Sci. 51, 4142–4149 (2016).
  • S. S. Manoharan, and K. C. Patil, Combustion synthesis of metal chromite powders, J Am Ceram Soc. 75, 1012–1015 (1992).
  • K. A. Razak, C. J. Yip, and S. Sreekantan, Synthesis of (Bi0.5Na0.5)TiO3 (BNT) and Pr doped BNT using the soft combustion technique and its properties, J Alloy Compd. 509, 2936–2941 (2011).
  • R. K. Lenka, T. Mahata, P. K. Sinha, and A. K. Tyagi, Combustion synthesis of gadolinia-doped ceria using glycine and urea fuels, J Alloys Comp. 466, 326–329 (2008).
  • C. Kornphom, A. Laowanidwatana, and T. Bongkarn, Influence of sintering temperature on properties of BNKLLT–6 wt% BCTZ binary lead-free piezoelectric ceramic prepared through the solid state combustion technique, Phase Transitions 90, 317–324 (2017).
  • A. Herabut and A. M. Safari, Processing and electromechanical properties of (Bi0.5Na0.5)1–1.5xLaxTiO3 ceramics, J Am Ceram Soc. 80, 2954–2958 (1997).
  • W. J. Kuen, L. K. Pah, A. H. Shaari, C. S. Kien, and N. S. Wei, The effect of sintering temperature on crystal structure and microstructure of Pr0.67Ba0.33MnO3 ceramic, Adv. Mater. Res. 173, 12–17 (2011).
  • X. X. Wang, X. G. Tang, K. W. Kwok, H. L. W. Chan, and C. L. Choy, Effect of excess Bi2O3 on the electrical properties and microstructure of (Bi1/2Na1/2)TiO3 ceramics, Appl Phys A. 80, 1071–1075 (2005).
  • H. Q. Fan and L. J. Liu, Microstructure and electrical properties of the rare-earth doped 0.94Na0.5Bi0.5TiO3-0.06BaTiO3 piezoelectric ceramics, J Electroceram. 21, 300–304 (2008).
  • W. Jo, S. Schaab, E. Sapper, L. A. Schmitt, H. J. Kleebe, and A. J. Bell, J. Rödel, On the phase identity and its thermal evolution of lead-free (Bi1/2Na1/2)TiO3-6 mol%BaTiO3, J Appl Phys. 110, 074106 (2011).
  • J. U. Rahman, A. Hussain, A. Maqbool, R. M. Ahmed, M. Kim, and M. H. Kim, Effect of sintering temperature on the electromechanical properties of 0.945Bi0.5Na0.5TiO3-0.055BaZrO3 ceramics, J Korean Phys Soc. 66, 1072–1076 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.